Programming Guide
(With Remote Operation and File Downloads)

Agilent Technologies
Signal Generators

This guide applies to the following signal generator models:

N5181A/82A MXG Signal Generators E4428C/38C ESG Signal Generators

E8257D/67D PSG Signal Generators E8663B Analog Signal Generator
Due to our continuing efforts to improve our products through firmware and hardware revisions, signal generator design
and operation may vary from descriptions in this guide. We recommend that you use the latest revision of this guide to

ensure you have up-to-date product information. Compare the print date of this guide (see bottom of page) with the latest
revision, which can be downloaded from the following websites:

hitp://www.agilent.com/find/maxg hitp://www.agilent.com/find/esg

hitp://www.agilent.com/find/psg hitp://www.agilent.com/find/e8663b

-:::' Agilent Technologies

Manufacturing Part Number: N5180- 90005
Printed in USA
September 2006

© Copyright 2006 Agilent Technologies, Inc.

Notice

The material contained in this document is provided “as is”, and is subject to being changed, without
notice, in future editions.

Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either
express or implied with regard to this manual and to any of the Agilent products to which it
pertains, including but not limited to the implied warranties of merchantability and fitness for a
particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or any of the Agilent products
to which it pertains. Should Agilent have a written contract with the User and should any of the
contract terms conflict with these terms, the contract terms shall control.

Trademarks

Throughout this book, trademarked names are used. Rather than put a trademark symbol in every
occurrence of a trademarked name, we state that we are using the names in an editorial fashion only
and to the benefit of the trademark owner with no intention of infringement of the trademark.

Contents

1 Getting Started with Remote Operation

Programming and Software/Hardware Layers. 2
Interfaces L e e e 3
I0 Libraries and Programming Languages. i 5
Agilent 10 Libraries Suite 5
Windows NT and Agilent 10 Libraries M (and Earlier) 6
Selecting 10 Libraries for GPIB. 7
Selecting IO Libraries for LAN e 8
Programming Languages. e e e 9
Using the Web Browser. e 10
Enabling the Signal Generator Web Server 11
Preferences. e 16
Configuring the Display for Remote Command Setups (Agilent MXG). 17
Configuring the Display for Remote Command Setups (ESG/PSG/E8663B). 17
Setting the Help Mode (Agilent MXG). 0 et e 18
Setting the Help Mode (ESG/PSG/E8663B) 18
Error Messages o e e 19
Error Message File e 19
Error Message Types. o o o i i i e e e e 20

2 Using IO Interfaces

Using GPIB e e e e 22
Installing the GPIB Interface 22
Set Up the GPIB Interface e 24
Verify GPIB Functionality. e 25
GPIB Interface Terms e e 25
GPIB Programming Interface Examples 26
Before Using the GPIB Examples. ittt ettt 26
Interface Check using HP Basic and GPIB. 26
Interface Check Using NI-488.2 and C++. it 26
Using LANo e e 28
Setting Up the LAN Interface e 29
Setting up Private LAN e e e 35
Verifying LAN Functionality e 36
Using VXI-11 . . . e e 40
Using Sockets LAN 41
Using Telnet LAN 42
Using FTP 46
Using RS-232 (ESG, PSG, and E8663B Only). 48
Selecting 10 Libraries for RS-232 48

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide iii

Contents

Setting Up the RS-232 Interface e 50
Verifying RS-232 Functionality 52
Character Format Parameters. e 53

If You Have Problems e e 53
RS-232 Programming Interface Examples 54
Before Using the Examples e 54
Interface Check Using HP BASIC e 54
Interface Check Using VISA and C i 55
Queries Using HP Basic and RS-232 55
Queries for RS-232 Using VISA and C. it 56
Using USB (Agilent MXG Only) e e e e 57
Selecting I/O Libraries for USB e 57
Setting Up the USB Interface. e 59

3 Programming Examples

Using the Programming Interface Examples 64
Programming Examples Development Environment. 64
Running C++ Programs e e e e 65
Running C# Examples. e 66
Running Basic Examples e 66
Running Java Examples. e 67
Running MATLAB Examples. e e e e e 67
Running Perl Examples 67
Using GPIB e 68
Installing the GPIB Interface Card i 68
GPIB Programming Interface Examples 70
Before Using the GPIB Examples i 70
GPIB Function Statements (Command Messages) v v v v i v v v i i it e e e 70
Interface Check using HP Basic and GPIB 74
Interface Check Using NI-488.2 and C++ 75
Interface Check for GPIB Using VISA and C. 76
Local Lockout Using HP Basic and GPIB, 77
Local Lockout Using NI-488.2 and C++. ittt e e 78
Queries Using HP Basic and GPIB. 80
Queries Using NI-488.2 and Visual C++ 81
Queries for GPIB Using VISA and C e 83
Generating a CW Signal Using VISA and C. 85
Generating an Externally Applied AC-Coupled FM Signal Using VISA and C. 87
Generating an Internal FM Signal Using VISA and C 89
Generating a Step-Swept Signal Using VISA and C++ 91
Generating a Swept Signal Using VISA and Visual C++ 92

iv Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Contents

Saving and Recalling States Using VISA and C. 95
Reading the Data Questionable Status Register Using VISA and C. 97
Reading the Service Request Interrupt (SRQ) Using VISA and C. 101
Using 8757D Pass-Thru Commands (PSG with Option 007 Only). 105
LAN Programming Interface Examples. e 108
VXI-11 Programming. e e e e e e e e e e e e 108
VXI-11 Programming Using SICL and C++., 109
VXI-11 Programming Using VISA and C++. 110
Sockets LAN Programming and C 112
Queries for Lan Using Sockets e 115
Sockets LAN Programming Using Java 136
Sockets LAN Programming Using PERL 138
RS-232 Programming Interface Examples (ESG/PSG/E8663B Only) 140
Before Using the Examples. e 140
Interface Check Using HP BASIC i 140
Interface Check Using VISA and C e 141
Queries Using HP Basic and RS-232 143
Queries for RS-232 Using VISA and C 144

4 Programming the Status Register System

OVEIVIEW . . . o o i e e e e e e e e e e e e e e 148
Status Register Bit Values 157
Example: Enable a Register 157
Example: Query a Register. e e 157
Accessing Status Register Information L L L 158
Determining What to Monitor 158
Deciding How to Monitor. e 158
Status Register SCPI Commandsttt 160
Status Byte Group e 163
Status Byte Register e 164
Service Request Enable Register 164
Status GroupsS ot e e 165
Standard Event Status Group e 166
Standard Operation Status Group i 168
Baseband Operation Status Group e 171
Data Questionable Status Group e 174
Data Questionable Power Status Group. 177
Data Questionable Frequency Status Group. 180
Data Questionable Modulation Status Group0.... 183
Data Questionable Calibration Status Group 186

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide v

Contents

Data Questionable BERT Status Group. 189
5 Creating and Downloading Waveform Files

Overview of Downloading and Extracting Waveform Files 194
Waveform Data Requirements. 195
Understanding Waveform Data e 196
Bits and Bytes. e 196
LSB and MSB (Bit Order) 196
Little Endian and Big Endian (Byte Order). 197
Byte Swapping 198
DAC Input Values. 199

2’s Complement Data Format. e 201

T and Q Interleaving. e e 202
Waveform Structure e e e 203
File Header. e e 203
Marker File. 203

I/Q File . . . o e 205
Waveform o e e 205
Waveform Phase Continuity e e 206
Phase Discontinuity, Distortion, and Spectral Regrowth. 206
Avoiding Phase Discontinuities 206
Waveform Memory o o e e e e e e 209
Memory Allocation e e e 212
Memory Size. e e e e e 214
Commands for Downloading and Extracting Waveform Data. 216
Waveform Data Encryption e 216
File Transfer Methods. e 218
SCPI Command Line Structure. it 218
Commands and File Paths for Downloading and Extracting Waveform Data 219
FTP Procedures e e 223
Creating Waveform Data e e 225
Code Algorithm 225
Downloading Waveform Data e 232
Using Simulation Software. e 232
Using Advanced Programming Languages 235
Loading, Playing, and Verifying a Downloaded Waveform. 238
Loading a File from Non-Volatile Memory., 238
Playing the Waveform e 238
Verifying the Waveform e 239
Building and Playing Waveform Sequences 240

vi Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Contents

Using the Download Utilities e 241
Downloading E443xB Signal Generator Files 242
E443xB Data Format. e e 242
Storage Locations for E443xB ARB files. 242
SCPI Commands. o e e e e e e e e 243
Programming Examples e e e e 245
C++ Programming Examples e e 245
MATLAB Programming Examples. e 270
Visual Basic Programming Examples 277
HP Basic Programming Examples e 283
Troubleshooting Waveform Files 292
Configuring the Pulse/RF Blank (Agilent MXG) 293
Configuring the Pulse/RF Blank (ESG/PSG). i 293

6 Creating and Downloading User-Data Files

OVEIVIEW . . o o e i i e e e e e e e e e e e e e e e e e 296
Signal Generator MemOTY o i e e e e e e 297
Memory Allocation e e e 299
Memory Size e e e e 300
Checking Available Memory e e e e 301
User File Data (Bit/Binary) Downloads (E4438C and E8267D) 303
User File Bit Order (LSB and MSB). e 304
Bit File Type Data 304
Binary File Type Data. e 307
User File Size e e 308
Determining Memory Usage for Custom and TDMA User File Data 309
Downloading User Files. e 312
Command for Bit File Downloads 315
Commands for Binary File Downloads 316
Selecting a Downloaded User File as the Data Source. 317
Modulating and Activating the Carrier 318
Modifying User File Data. e 318
Understanding Framed Transmission For Real-Time TDMA 320
Real-Time Custom High Data Rates 323
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D) 326
Understanding PRAM Files. 327
PRAM File Size e e 330
SCPI Command for a List Format Download 331
SCPI Command for a Block Data Download 332
Selecting a Downloaded PRAM File as the Data Source. 335

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide vii

Contents

Modulating and Activating the Carrier. 336
Storing a PRAM File to Non-Volatile Memory and Restoring to Volatile Memory 336
Extracting a PRAM File. e 336
Modifying PRAM Files. e 338
FIR Filter Coefficient Downloads (E4438C and E8267D) 340
Data Requirements. e 340
Data Limitations e e e 340
Downloading FIR Filter Coefficient Data 340
Selecting a Downloaded User FIR Filter as the Active Filter 341
Save and Recall Instrument State Files 343
Save and Recall SCPI Commandsttt 343
Save and Recall Programming Example Using VISA and C#. 344
User Flatness Correction Downloads Using C++ and VISA 354
Data Transfer Troubleshooting (E4438C and E8267D Only) 358
User File Download Problems. e 358
PRAM Download Problems. e e 359
User FIR Filter Coefficient File Download Problems. 360

viii

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Documentation Overview

Installation Guide

User’s Guide

Programming Guide

SCPI Reference

Service Guide

Key Help?

Safety Information

Receiving the Instrument

Environmental & Electrical Requirements
Basic Setup

Accessories

Operation Verification

Regulatory Information

Instrument Overview
Front Panel Operation
Security

Basic Troubleshooting

Remote Operation
Status Registers
Creating & Downloading Files

SCPI Basics
Command Descriptions
Programming Command Compatibility

Troubleshooting

Assembly Replacement
Replaceable Parts

Post-Repair Procedures

Safety and Regulatory Information

Key function description
Related SCPI commands

a.Press the Help hardkey, and then the key for which you wish help.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

1 Getting Started with Remote Operation

¢ “Programming and Software/Hardware Layers” on page 2
e “Interfaces” on page 3

e “IO Libraries and Programming Languages” on page 5

e “Using the Web Browser” on page 10

¢ “Preferences” on page 16

* “Error Messages” on page 19

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Getting Started with Remote Operation
Programming and Software/Hardware Layers

Programming and Software/Hardware Layers
Agilent MXG, ESG, PSG, and E8663B signal generators support the following interfaces:

Instrument Interfaces Supported

Agilent MXG GPIB, LAN, and USB 2.0

Agilent E8663B% | GPIB, LAN, and ANSI/EIA232 (RS-232) serial

connection

Agilent ESG GPIB, LAN, and ANSI/EIA232 (RS-232) serial
connection

Agilent PSG? GPIB, LAN, and ANSI/EIA232 (RS-232) serial
connection

a.The PSG and E8663B’s AUXILIARY INTERFACE connector is compatible with ANSI/EIA232
(RS-232) serial connection but GPIB and LAN are recommended for making faster measurements
and when downloading files. Refer to “Using RS-232 (ESG, PSG, and E8663B Only)” on page 48
and the User’s Guide.

Use these interfaces, in combination with IO libraries and programming languages, to remotely
control a signal generator. Figure 1-1 uses GPIB as an example of the relationships between the
interface, 10 libraries, programming language, and signal generator.

2 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Getting Started with Remote Operation
Interfaces

Figure 1-1 Software/Hardware Layers

Programming Language:
C/C++, Visual BASIC, LabView etc.

VISA

National Instruments

Agilent VISA VISA

National Instruments

Agilent SICL NI-488 2 Library

Agilent GPIB NI PCI-GPIB
Interface Card Interface Card

Signal Generator

ce910a

Interfaces

GPIB GPIB is used extensively when a dedicated computer is available for remote control of
each instrument or system. Data transfer is fast because GPIB handles information in
bytes with data transfer rates of up to 8 MBps. GPIB is physically restricted by the
location and distance between the instrument/system and the computer; cables are
limited to an average length of two meters per device with a total length of 20 meters.

For more information on configuring the signal generator to communicate over the
GPIB, refer to “Using GPIB” on page 22.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 3

Getting Started with Remote Operation

Interfaces

LAN Data transfer using the LAN is fast as the LAN handles packets of data. The distance
between a computer and the signal generator is limited to 100 meters (100Base-T and
10Base-T).

The Agilent MXG is capable of 100Base-T LAN communication. The ESG, PSG and
E8663B are designed to connect with a 10Base-T LAN. Where auto-negotiation is
present, the ESG, PSG, and E8663B can connect to a 100Base-T LAN, but communicate
at 10Base-T speeds. For more information on LAN communication refer to
hitp://www.teee.org.

The following protocols can be used to communicate with the signal generator over the
LAN:

* VXI-11 (recommended)

e LXI? (Agilent MXG only)

* Sockets LAN

¢ TELNET

e FTP

For more information on configuring the signal generator to communicate over the LAN,
refer to “Using LAN” on page 28.

RS- 2320 RS-232 is a common method used to communicate with a single instrument; its primary

(ESG/PSG/E8663B use is to control printers and external disk drives, and connect to a modem.

Only) Communication over RS-232 is much slower than with GPIB, USB, or LAN because data
is sent and received one bit at a time. It also requires that certain parameters, such as
baud rate, be matched on both the computer and signal generator.

For more information on configuring the signal generator to communicate over the
GPIB, refer to “Using RS-232 (ESG, PSG, and E8663B Only)” on page 48.

USB ¢ The rear panel Mini-B connector is a device USB and can be used to connect a

(Agilent MXG controller for remote operation.

Only) * The Type-A front panel connector is a host USB and can be used to connect a

mouse, a keyboard, or a USB 1.1/2.0 flash drive.

USB 2.0’s 64 MBps communication speed is faster than GPIB (for longer data transfers,
>1 KB) or RS-232. (For additional information, refer to the Agilent SICL or VISA User’s
Guide.)

For more information on connecting the signal generator to the USB, refer to the
“Agilent 10 Libraries Suite” on page 5 and the Agilent Connection Expert in the Agilent
10 Libraries Help.

For more information on configuring the signal generator to communicate over the USB,
refer to “Using USB (Agilent MXG Only)” on page 57.

a.The Agilent MXG is LXI Class C compliant. For more information on the LXI standards, refer to http.//www.Ixistandard.org/home.

b.The PSG and E8663B’s AUXILIARY INTERFACE connector is compatible with ANSI/EIA232 (RS-232) serial connection but GPIB and LAN
are recommended for making faster measurements and when downloading files. Refer to “Using RS-232 (ESG, PSG, and E8663B Only)” on
page 48 and the User’s Guide.

4 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Getting Started with Remote Operation
10 Libraries and Programming Languages

IO Libraries and Programming Languages

The IO libraries is a collection of functions used by a programming language to send instrument
commands and receive instrument data. Before you can communicate and control the signal
generator, you must have an IO library installed on your computer. The Agilent IO libraries are
included on an Automation- Ready CD with your signal generator and Agilent GPIB interface board,
or they can be downloaded from the Agilent website: http.;//www.agilent.com.

NOTE To learn about using IO libraries with Windows XP or newer operating systems, refer to the
Agilent 10 Libraries Suite’s help located on the Automation-Ready CD that ships with your
signal generator, Agilent GPIB interface board, or that can be downloaded from the Agilent
website: http.//www.agilent.com.

To better understand setting up Windows XP operating systems and newer, using PC LAN
port settings, refer to Chapter 2.

Agilent 10 Libraries Suite

The Agilent IO Libraries Suite replaces earlier versions of the Agilent 10 Libraries and is supported
on all platforms except Windows NT. If you are using the Windows NT platform, you must use Agilent
10 Libraries version M or earlier.

Windows 98 and Windows ME are not supported in the Agilent 10 Libraries Suite version 14.1 and
higher.

CAUTION The Agilent MXG’s USB interface requires Agilent 10 Libraries Suite 14.1 or newer. For
more information on connecting instruments to the USB, refer to the Agilent Connection
Expert in the Agilent 10 Libraries Help.

NOTE The signal generator ships with an Automation-Ready CD that contains the Agilent 10
Libraries Suite 14.0 for users who need support for Windows 98 and Windows ME.

Once the libraries are loaded, you can use the Agilent Connection Expert, Interactive 10, or VISA
Assistant to configure and communicate with the signal generator over different IO interfaces. Follow
instructions in the setup wizard to install the libraries.

Windows NT and XP are registered trademarks of Microsoft Corporation.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 5

Getting Started with Remote Operation
10 Libraries and Programming Languages

NOTE Before setting the LAN interface the signal generator must be configured for VXI-11 SCPIL
Refer to “Configuring the VXI-11 for LAN (Agilent MXG)” on page 29 or “Configuring the
VXI- 11 for LAN (ESG/PSG/E8663B)” on page 30.

Refer to the Agilent I0 Libraries Suite Help documentation for details about this software.

Windows NT and Agilent 10 Libraries M (and Earlier)

NOTE Windows NT is not supported on Agilent I0 Libraries 14.0 and newer.

The following sections are specific to Agilent 10 Libraries versions M and earlier and apply
only to the Windows NT platform.

For additional information on older versions of Agilent IO libraries, refer to the Agilent
Connection Expert in the Agilent I0 Libraries Help. The Agilent 10 libraries are included
with your signal generator or Agilent GPIB interface board, or they can be downloaded from
the Agilent website: http;//www.agilent.com.

Using |0 Config for Computer-to-Instrument Communication with VISA (Automatic or Manually)

After installing the Agilent IO Libraries version M or earlier, you can configure the interfaces
available on your computer by using the I0 Config program. This program can setup the interfaces
that you want to use to control the signal generator. The following steps set up the interfaces.

1. Install GPIB interface boards before running IO Config.

NOTE You can also connect GPIB instruments using the Agilent 82357A USB/GPIB Interface
Converter, which eliminates the need for a GPIB card. For more information, go to
hitp://www.agilent.com/find/gpib.

Run the I0 Config program. The program automatically identifies available interfaces.

3. Click on the interface type you want to configure, such as GPIB, in the Available Interface Types
text box.

Click the Configure button. Set the Default Protocol to AUTO.
Click OK to use the default settings.
Click OK to exit the I0 Config program.

VISA Assistant

VISA is an industry standard IO library API. It allows the user to send SCPI commands to
instruments and to read instrument data in a variety of formats. You can use the VISA Assistant,

6 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Getting Started with Remote Operation
10 Libraries and Programming Languages

available with the Agilent 10 Libraries versions M and earlier, to send commands to the signal
generator. If the interface you want to use does not appear in the VISA Assistant then you must
manually configure the interface. See the Manual VISA Configuration section below. Refer to the VISA
Assistant Help menu and the Agilent VISA User’s Manual (available on Agilent’s website) for more
information.

VISA Configuration (Automatic)
1. Run the VISA Assistant program.

2. Click on the interface you want to use for sending commands to the signal generator.
3. Click the Formatted 170 tab.
4. Select SCPI in the Instr. Lang. section.

You can enter SCPI commands in the text box and send the command using the ViPrintf button.

VISA Configuration (Manual)

Perform the following steps to use 10 Config and VISA to manually configure an interface.
1. Run the 10 Config Program.

2. Click on GPIB in the Available Interface Types text box.

3. Click the Configure button. Set the Default Protocol to AUTO and then click OK to use the default
settings.

Click on GPIBO in the Configured Interfaces text box.
Click Edit...

Click the Edit VISA Config... button.

Click the Add device button.

Enter the GPIB address of the signal generator.

© ©® N S ok

Click the OK button in this form and all other forms to exit the IO Config program.

Selecting 10 Libraries for GPIB

The IO libraries are included with the GPIB interface card, and can be downloaded from the National
Instruments website or the Agilent website. See also, “IO Libraries and Programming Languages” on
page 5 for information on IO libraries. The following is a discussion on these libraries.

CAUTION Because of the potential for portability problems, running Agilent SICL without the
VISA overlay is not recommended by Agilent Technologies.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 7

Getting Started with Remote Operation
10 Libraries and Programming Languages

VISA

SICL

NI-488.2

VISA is an IO library used to develop 10 applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used

for programming the signal generator. The NI-VISA[and Agilent VISA libraries
are similar implementations of VISA and have the same commands, syntax, and
functions. The differences are in the lower level 10 libraries; NI-488.2 and SICL
respectively. It is best to use the Agilent VISA library with the Agilent GPIB
interface card or NI-VISA with the NI PCI-GPIB interface card.

Agilent SICL can be used without the VISA overlay. The SICL functions can be

called from a program. However, if this method is used, executable programs will
not be portable to other hardware platforms. For example, a program using SICL
functions will not run on a computer with NI libraries (PCI-GPIB interface card).

NI-488.2 can be used without the VISA overlay. The NI-488.2 functions can be
called from a program. However, if this method is used, executable programs will
not be portable to other hardware platforms. For example, a program using
NI-488.2 functions will not run on a computer with Agilent SICL (Agilent GPIB
interface card).

Selecting IO Libraries for LAN

The TELNET and FTP protocols do not require IO libraries to be installed on your computer.
However, to write programs to control your signal generator, an IO library must be installed on your
computer and the computer configured for instrument control using the LAN interface.

The Agilent IO libraries Suite is available on the Automation-Ready CD, which was shipped with your
signal generator. The libraries can also be downloaded from the Agilent website. The following is a
discussion on these libraries.

Agilent VISA

SICL

VISA is an IO library used to develop IO applications and instrument drivers that
comply with industry standards. Use the Agilent VISA library for programming the
signal generator over the LAN interface.

Agilent SICL is a lower level library that is installed along with Agilent VISA.

NI-VISA is a registered trademark of National Instruments Corporation.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Getting Started with Remote Operation
10 Libraries and Programming Languages

Programming Languages

Along with Standard Commands for Programming Instructions (SCPI) and IO library functions, you
use a programming language to remotely control the signal generator. Common programming
languages include:

o (C/C++

o« C#

« MATLAB® (MATLAB is a registered trademark of The MathWorks.)
« HP Basic

¢ LabView

e Javall (Java is a U.S. trademark of Sun Microsystems, Inc.)

+ Visual Basic’ (Visual Basic is a registered trademark of Microsoft Corporation.)
* PERL

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 9

Getting Started with Remote Operation
Using the Web Browser

Using the Web Browser

The signal generator can be used as a Web
Server. The Web Server uses a Client/server i Agilent Technologies NY)(CRSIENEINCENIIEN [e
model where the client is the web browser
on your PC or workstation and the server o
is the signal generator. When you enable
the Web Server, you can access a web page = .

) > e ;
that resides on the signal generator. B vsoosonc

I Tenet

& o werese

14112193230

Welcome to your
Web-Enabled MXG

s Genemo
i Coriro
Information about this Web-Enabled MXG:

el oo

The web-enabled signal generator web
page, shown at right and page 13, provides
general information on the signal generator,
FTP access to files stored on the signal R
generator, and a means to control the
instrument using either a remote
front- panel interface or SCPI commands. The Agilent MXG is LXI Class C compliant. For more information on the
The web page also has links to Agilent’s LXI standards, refer to http://www.Ixistandard.org/home.
products, support, manuals, and website.
For additional information on memory
catalog access (file storing), and FTP, refer
to the User’s Guide and “Waveform

2

VISA TCPIP Comnect String: [RGIREEIRINGG3

[advanced Information about this Web-Enabled MXG:

”
Memory on page 209 and for FTP, see To operate the signal generator, click the keys.
“Using FTP” on page 46 and “FTP
Procedures” on page 223. \J
The Web Server service is compatible with [e S I, R D Pt
. N GHz | = i dBn Frea fef Set |[Amptd | Aux [FMeM| Save || ity || Trigger | User

the Microsoft© Internet Explorer (6.0 and | — — Sk oy T 00 20 27 (2
newer) web browser and operating systems B A e

4 ! R -
Windows 2000. Windows XP and newer. —— L Tee
For more information on using the signal dd L
generator as a Web Server, refer to BN Wihiiiidiiay T8 (20 7

“Enabling the Signal Generator Web Server”
on page 11.

Microsoft is a registered trademarks of Microsoft.

10 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Enabling the Signal Generator Web Server

Getting Started with Remote Operation
Using the Web Browser

NOTE

Javascripts or Active Scripts must be enabled to use the web front panel controls.

1. If it is not already enabled, turn on the Web server: Refer to “Agilent MXG Web Server On” on

page 11 or “ESG/PSG/E8663B Web Server On” on page 11.

Agilent MXG Web Server On

Iiiiiil'

Utility F
I/0 ConfigM

Instrument
Ad justments®

Displaus

Power On/
Freset

Instrument Infow

PN

I1/0 Config

GPIE Setups

If necessary toggle Web Server On

Off to On.

LAN Setupw

LAM Services
Setup?

PV NV

ESG/PSG/E8663B Web Server On

If necessary toggle Web Server On

GPIB Address

19
Remote Language,
(5CPI
RS-232 Setupk

LAN Setupk

Off to On.

Sockets SCRI
aOff

LAN Services,|
Setup

Natnty, |

\i

Proceed With,
Reconf iourat ion

Sockets SCRI
aff

WHI-11 SCPI
0ff N

Reconfigurat.ion®

Confirm Chanoe

(Instrument
Will Reboot)

Reconfigure #

Confirm Chanoe

Proceed With $#-

Y

(Instrument
Will Reboot)

Laann, oot |

For details on each key, use the key help.
Refer to “Setting the Help Mode (Agilent MXG)”
on page 18 and the User’s Guide. For
additional SCPI command information, refer to
the SCPI Command Reference.

For details on each key, use the Key and Data Field
Reference. For additional SCPI command information,
refer to the SCPI Command Reference.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

11

Getting Started with Remote Operation
Using the Web Browser

Launch the PC or workstation web browser.

3. In the web browser address field, enter the signal generator’s IP address. For example,
hitp://101.101.101.101 (where 101.101.101.101 is the signal generator’s IP address).

The IP (internet protocol) address can change depending on the LAN configuration (see “Using
LAN” on page 28).

4. On the computer’s keyboard, press Enter. The web browser displays the signal generator’s
homepage.

NOTE If you are experiencing problems with opening the signal generator’s homepage, verify that
the pop-up blocker is turned off on your web browser.

5. Click the Signal Generator Web Control menu button on the left of the page. The front panel web
page displays.

12 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Getting Started with Remote Operation
Using the Web Browser

To control the signal generator, either
click the front panel keys or enter SCPI
commands.

Agilent Technologies WfP(cR:]

Welcome to your I
Web-Enabled MXG
Information about this Web-Enabled MXG:

M advanced information about this Web-Enabled MXG:

Use the navigation bar o the leflto access your MXG and relatsd informaton

@ Agient Technalogies, Inc. 2008

The FTP access softkey opens to show the folders containing the
signal generator’s memory catalog files.

y \

& ftp://141.121.91.244/ - Microsoft Internet Explorer provi\led by Agilent Technologies. Inc

File Edit Wiew Favorites Tools Help

Q= - @ F | PO seach [roiders | [E-

Address |($ Frpjf141.121.91.2447

\
- o o o B =
Other Bacey AREI ARED EEG1 BBG BIM F

@8 1nternet Explorer

§3 My Mebwork Places
MARKERS MYARBI MYARBQ SECUREWAVE SEQ

=

WAVEFORM

AL LNA LN i TN

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 13

Getting Started with Remote Operation
Using the Web Browser

LAN Configuration System Defaults (Agilent MXG Only)

NOTE The current instrument’s LAN configuration system information can be found on the signal
generator’s homepage and on the signal generator. Refer to “Enabling the Signal Generator
Web Server” on page 11 and to “Displaying the LAN Configuration Summary (Agilent MXG)”

on page 15.

If the instrument has been restored to the factory defaults from the LAN Setup menu the signal
generator will revert to the values displayed in Table 1-1 on page 14. Refer to “Displaying the LAN
Configuration Summary (Agilent MXG)” on page 15.

To restore instrument LXI password (to “agilent”) and the LAN settings to their factory default
values, press the following key sequence on the signal generator:

Utility > I/O Config > LAN Setup > Advanced Settings > Restore LAN Settings to Default Values >

Restore LAN Settings to Default Values

NOTE There are no SCPI commands associated with this LXI password factory reset.

For more information, refer to the signal generator’'s Web Server Interface Help.

Table 1-1 LAN Configuration Summary Values

Parameter

Default

Signal Generator LAN Configuration Summary

Host nane: Agilent-<model number>—-<last_5_chars_of_serial_number>
Config Type: AUTO

| P Address: 127.0.0.1

Connecti on Mnitoring: (03]

Subnet : 255. 255. 255. 0
DNS Server Override: O f

Gat enay: 0.0.0.0
Dynam ¢ DNS Nam ng: (0]

RFC NETBI G5 Nami ng: (03]

DNS Server: 0.0.0.0

14

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Table 1-1 LAN Configuration Summary Values

Getting Started with Remote Operation

Using the Web Browser

Parameter Default
TCP Keep Alive: O

Donai n Nane: @ <empty>
TCP Keep Alive Timeout: 1800. 0 sec

Signal Generator Web Server Interface

Description: Agi | ent <model _nunber >(<seri al _nunber >)
SICL Interface NameP: gpi b0
Web Password: agi | ent

a.The Domain Name defaults to a null field.
b.This information is part of the “Advanced Information about this Web-Enabled <signal generator model number>"

Displaying the LAN Configuration Summary (Agilent MXG)

Utility > 10 Config

SCPI command:
Not appl i cabl e

Confirm Restore Settings to Factory Defaults: Confirming this action configures the
signal generator to its original factory default settings. For informatiqn regarding
those default settings, refer to Table 1-1 on page 14.

—>

I1/0 Config

GPIE Setups

LAH Setué ?

Hostname

Adv Settings ~

Domain Mame

LAN Setupw

Confio Tupe
(fanual)®

Connect.ion

Monitorin
aOff Iiﬁﬁ

LAM Services
Setup?

PV NV

Manual Config
Settinos®

Dunamic Hostname
Services

Advanced
Settings

TCP Keep ﬂliue’
Setup

Proceed Hith
Reconfigurat.ion®

Restore LAN
Settinas Lo
Default Values

For details on each key, use the key help (described in the User’'s Guide).

_Confirm
Confirm Restore

LAN Settinos to
Default values

LA NN

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Getting Started with Remote Operation
Preferences

Preferences

The following commonly used manual command sections are included here:
“Configuring the Display for Remote Command Setups (Agilent MXG)” on page 17
“Configuring the Display for Remote Command Setups (ESG/PSG/E8663B)” on page 17
“Setting the Help Mode (Agilent MXG)” on page 18

“Setting the Help Mode (ESG/PSG/E8663B)” on page 18

16 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Getting Started with Remote Operation
Preferences

Configuring the Display for Remote Command Setups (Agilent MXG)

Utility

Utility 7

Instrument Infow

PN

Display &

Display &
Select Color

Falettey
(Bright Color)

Erightness

I/0 ConfigM 100

Instrument | Eontraﬁg
Adjustments

Screen Saver

Displausf—» On

Screen Saver

Power On/ | Mode

Freset (Light Onlu?

Screen Saver
Delau: 1 hr

fore 1 of 2

| Update in Remote
| OF]

Activate
Secure Displau®

A\../\-f

For details on each key, use the key help (described in User's Guide).

Select Update in Remote until On is
-«—highlighted.

SCPI commands:
: DI SPl ay: REMbt e ON| OFF| 1] 0
: DI SPI ay: REMbt e?

Configuring the Display for Remote Command Setups (ESG/PSG/E8663B)

Utility
—

| Instrument Info/,|

Errar, |
Info

GFIB/RS-232)
LAk

Instrument.,
Adjustments

Displau

Fower 0n/|
Freset

Memory Catalogeff —»

Help Mode

Screen Saver Mode

Update in Remote
of

Erightness
g0

Screen Saver
| Of+ Ju]

(Light Onlu)

Screen Saver
Delau: 1 hr

Inverse Wideo
I On

f Il

More
(1 of 23

SCPI commands:
: DI SPI ay: REMbt e ON| OFF| 1| 0
: DI SPl ay: REMbt €?

<«— Select Update in Remote until On is highlighted.

For details on each key, use the Key and Data Field Reference. For additional SCPI command information, refer to the SCPI Command

Reference.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

17

Getting Started with Remote Operation
Preferences

Setting the Help Mode (Agilent MXG)

g

When you press Help:

Help displays only for the next key you press. Use the cursor keys, Page Up, Page
Down, and the RPG knob can be used to scroll the help text. Then press Cancel to
close the help window or press any other key to close the help window and

execute that key.

For details on each key, use the key help (described in User’s Guide).

Setting the Help Mode (ESG/PSG/E8663B)

'iiiiil'

Errar, |
Info

GFIB/RS-232)
LAk

Instrument.,
Adjustments

Displau

Fower 0n/|
Freset

Memory Catalog

| Instrunﬁnt Info/,

elp Mode

Dimgnostic InfoM
Options Infom

Self Teste

Mod Status Info
aOff

Help Modd™
IBTESEN Cont

Installed,
Eoard Info

SCPI commands:
: SYSTem HELP: MODE SI NG e
: SYSTem HELP: MODE?

When you press Help:
Single: Help displays only for the next key you press.

Cont: Help displays for each key you press and that key’s function activates.
To turn off the function, press Help.

For details on each key, use the Key and Data Field Reference. For additional SCPI command information, refer to the SCPI Command Reference.

18

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Getting Started with Remote Operation
Error Messages

Error Messages

If an error condition occurs in the signal generator, it is reported to both the SCPI (remote interface)
error queue and the front panel display error queue. These two queues are viewed and managed
separately; for information on the front panel display error queue, refer to the User’s Guide.

NOTE For additional general information on troubleshooting problems with your connections, refer
to the Help in the Agilent 10 Libraries and documentation.

When accessing error messages using the SCPI (remote interface) error queue, the error numbers and
the <error_description> portions of the error query response are displayed on the host terminal.

Characteristic SCPI Remote Interface Error Queue

Capacity (#errors) 30

Linear, first-in/first- out.

Overflow Handling Replaces newest error with: - 350, Queue overfl ow

Viewing Entries?® Use SCPI query SYSTem ERRor [: NEXT] ?
Power up
Clearing the Queue Send a *CLS command

Read last item in the queue

Unresolved Errors® Re-reported after queue is cleared.

When the queue is empty (every error in the queue has been read, or the queue is cleared), the
No Errors following message appears in the queue:
+0, "No error"

a.0n the Agilent MXG, using this SCPI command to read out the error messages clears the display of the ERRannunciator and the error
message at the bottom of the screen.

b.On the Agilent MXG, executing the SCPI command * CLS clears the display of the ERRannunciator and the error message at the bottom
of the screen.

c.Errors that must be resolved. For example, unlock.

Error Message File

A complete list of error messages is provided in the file errormessages.pdf, on the CD-ROM supplied
with your instrument. In the error message list, an explanation is generally included with each error
to further clarify its meaning. The error messages are listed numerically. In cases where there are
multiple listings for the same error number, the messages are in alphabetical order.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 19

Getting Started with Remote Operation
Error Messages

Error Message Types

Events do not generate more than one type of error. For example, an event that generates a query
error will not generate a device- specific, execution, or command error.

Query Errors (-499 to -400) indicate that the instrument’s output queue control has detected a
problem with the message exchange protocol described in IEEE 488.2, Chapter 6. Errors in this class
set the query error bit (bit 2) in the event status register (IEEE 488.2, section 11.5.1). These errors
correspond to message exchange protocol errors described in IEEE 488.2, 6.5. In this case:

¢ Either an attempt is being made to read data from the output queue when no output is either
present or pending, or

¢ data in the output queue has been lost.

Device Specific Errors (-399 to -300, 201 to 703, and 800 to 810) indicate that a device operation
did not properly complete, possibly due to an abnormal hardware or firmware condition. These codes
are also used for self-test response errors. Errors in this class set the device-specific error bit (bit 3)
in the event status register (IEEE 488.2, section 11.5.1).

The <error_message> string for a positive error is not defined by SCPI. A positive error indicates that
the instrument detected an error within the GPIB system, within the instrument’s firmware or
hardware, during the transfer of block data, or during calibration.

Execution Errors (-299 to -200) indicate that an error has been detected by the instrument’s
execution control block. Errors in this class set the execution error bit (bit 4) in the event status
register (IEEE 488.2, section 11.5.1). In this case:

¢ Either a <PROGRAM DATA> element following a header was evaluated by the device as outside of
its legal input range or is otherwise inconsistent with the device’s capabilities, or

e a valid program message could not be properly executed due to some device condition.

Execution errors are reported after rounding and expression evaluation operations are completed.
Rounding a numeric data element, for example, is not reported as an execution error.

Command Errors (-199 to -100) indicate that the instrument’s parser detected an IEEE 488.2
syntax error. Errors in this class set the command error bit (bit 5) in the event status register (IEEE
488.2, section 11.5.1). In this case:

¢ Either an IEEE 488.2 syntax error has been detected by the parser (a control-to-device message
was received that is in violation of the IEEE 488.2 standard. Possible violations include a data
element that violates device listening formats or whose type is unacceptable to the device.), or

¢ an unrecognized header was received. These include incorrect device-specific headers and
incorrect or unimplemented IEEE 488.2 common commands.

20 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

2 Using 10 Interfaces

Using the programming examples with GPIB, LAN, RS-232, and USB interfaces:
* “Using GPIB” on page 22
* “Using LAN” on page 28

“Using RS-232 (ESG, PSG, and E8663B Only)” on page 48
e “Using USB (Agilent MXG Only)” on page 57

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

21

Using 10 Interfaces
Using GPIB

Using GPIB

GPIB enables instruments to be connected together and controlled by a computer. GPIB and its
associated interface operations are defined in the ANSI/IEEE Standard 488.1-1987 and ANSI/IEEE
Standard 488.2-1992. See the IEEE website, http://www.ieee.org, for details on these standards.

The following sections contain information for installing a GPIB interface card or NI-GPIB interface
card for your PC or UNIX-based system.

¢ “Installing the GPIB Interface” on page 22
¢ “Set Up the GPIB Interface” on page 24
¢ “Verify GPIB Functionality” on page 25

Installing the GPIB Interface

NOTE You can also connect GPIB instruments to a PC LAN port using the Agilent 82357A
USB/GPIB Interface Converter, which eliminates the need for a GPIB card. For more
information, refer to table on page 22 or go to http.//www.agilent.com/find/gpib.

A GPIB interface card must be installed in the computer. Two common GPIB interface cards are the
Agilent GPIB interface card and the National Instruments (NI) PCI-GPIB card. Follow the interface
card instructions for installing and configuring the card. The following table provide lists on some of
the available interface cards. Also, see the Agilent website, http://www.agilent.com for details on
GPIB interface cards.

Interface Operating 10 Library Languages Backplane/ Max IO Buffering
Type System BUS (kB/sec)

Agilent USB/GPIB Interface Converter for PC-Based Systems

Agilent 82357A Windows?® VISA / SICL | C/C++, Visual USB 1.1 850 Built-in
Converter 98(SE)/ME/ Basic, Agilent (2.0 compatible)
20009/ XP VEE, HP Basic for
Windows, NI
Labview

Agilent GPIB Interface Card for PC-Based Systems

Agilent 82341C Windows? VISA / SICL | C/C++, Visual ISA/EISA, 750 Built-in
for ISA bus 95/98/NT Basic, Agilent 16 bit
computers ® VEE, HP Basic for
/2000 Windows
Agilent 82341D Windows VISA / SICL C/C++, Visual ISA/EISA, 750 Built-in
Plug&Play for 95 Basic, Agilent 16 bit
PC VEE, HP Basic for
Windows
Agilent 82350A Windows VISA / SICL | C/C++, Visual PCI 32 bit 750 Built-in
for PCI bus 95/98/NT Basic, Agilent
computers /2000 VEE, HP Basic for
Windows

22 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces

Using GPIB
Interface Operating 10 Library Languages Backplane/ Max IO Buffering
Type System BUS (kB/sec)
Agilent USB/GPIB Interface Converter for PC-Based Systems
Agilent 82350B Windows VISA / SICL | C/C++, Visual PCI 32 bit > 900 Built-in
for PCI bus 98(SE)/ME/2000 Basic, Agilent
computers /XP VEE, HP Basic for
Windows
NI- GPIB Interface Card for PC-Based Systems
National Windows VISA C/C++, PCI 32 bit 1.5 MBps Built-in
Instruments 95/98/2000/ NI-488.2[1¢ Visual BASIC,
PCI-GPIB ME/NT LabView
National Windows VISA C/C++, PCI 32 bit 1.5 MBps Built-in
Instruments NT NI-488.2 Visual BASIC,
PCI-GPIB+ LabView
Agilent- GPIB Interface Card for HP-UX Workstations
Agilent E2071C HP-UX 9x, VISA/SICL ANSI C, EISA 750 Built-in
HP-UX 10.01 Agilent VEE,
Agilent BASIC,
HP-UX
Agilent E2071D | HP-UX 10.20 VISA/SICL ANSI C, EISA 750 Built-in
Agilent VEE,
Agilent BASIC,
HP-UX
Agilent E2078A HP-UX 10.20 VISA/SICL ANSI C, PCI 750 Built-in
Agilent VEE,
Agilent BASIC,
HP-UX
a.Windows 95, 98(SE), NT, 2000, and XP are registered trademarks of Microsoft Corporation.
b.Windows 98 and ME are registered trademarks of Microsoft Corporation.
¢.NI-488.2 is a trademark of National Instruments Corporation.
Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 23

Using 10 Interfaces
Using GPIB

Set Up the GPIB Interface

For the Agilent MXG refer to Figure 2-1 and for the ESG, PSG, and E8663B, Figure 2-2 on page 24.

Figure 2-1 Setting the GPIB Address on the Agilent MXG

Utility SCPI commands:
: SYSTem COMMuNI cat e: GPI B: ADDRess <nunber >

¢ : SYSTem COWMUNI cat e: GPl B: ADDRess?
Utility I/0 Confio GP! Enter
) —> >
I/0 Configef— GPIE Setupk EPIIS (ENREES > Erter
Instrument Femote Language
Ad justments® LAN Setups (SCPT
- Default address: 19 ,«-/ ——
Displaus LR Sef“géggg. ,/\ Range: 0-30

Pawer On/ N
Freset™
Instrument Infow

PN

For details on each key, use the key help. Refer to “Setting the Help Mode (Agilent MXG)” on page 18 and the User’s Guide. For additional
SCPI command information, refer to the SCPI Command Reference.

Figure 2-2 Setting the GPIB Address on the ESG/PSG/E8663B

Utility SCPI commands:
: SYSTem COMMUNI cat e: GPI B: ADDRess <nunber >
; ¢ : : SYSTem COMWMuNI cat e: GPl B: ADDRess?
GPIE Address »
T) -
= Femote Language
GPIB/RS Egﬁ’ BT
Instrument =
Ainstrents? R5-232 Setupk I
Default address: 19
Displau LAK Setupk Range: 0-30
Power On LAW Services
Prese{' Setup®

Memory Catalog

Instrument Info/|
Help Mode

For details on each key, use the Key and Data Field Reference. For additional SCPI command information, refer to the SCPI Command Reference.

24 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using GPIB

Connect a GPIB interface cable between the signal generator and the computer. (The following table
lists cable part numbers.)

Model 10833A 10833B 10833C 10833D 10833F 10833G

Length 1 meter 2 meters 4 meters .5 meter 6 meters 8 meters

Verify GPIB Functionality

To verify GPIB functionality, use the VISA Assistant, available with the Agilent IO Library or the
Getting Started Wizard available with the National Instrument IO Library. These utility programs
enable you to communicate with the signal generator and verify its operation over GPIB. For
information and instructions on running these programs, refer to the Help menu available in each
utility.

If You Have Problems

1. Verify that the signal generator’s address matches the address declared in the program (example
programs in Chapter 2 use address 19).
Remove all other instruments connected via GPIB and rerun the program.

3. Verify that the GPIB card’s name or id number matches the GPIB name or id number configured
for your PC.

GPIB Interface Terms

An instrument that is part of a GPIB network is categorized as a listener, talker, or controller,
depending on its current function in the network.

listener A listener is a device capable of receiving data or commands from other
instruments. Several instruments in the GPIB network can be listeners
simultaneously.

talker A talker is a device capable of transmitting data. To avoid confusion, a GPIB
system allows only one device at a time to be an active talker.

controller A controller, typically a computer, can specify the talker and listeners (including
itself) for an information transfer. Only one device at a time can be an active
controller.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 25

Using 10 Interfaces
GPIB Programming Interface Examples

GPIB Programming Interface Examples

NOTE The portions of the programming examples discussed in this section are taken from the full
text of these programs that can be found in Chapter 3, “Programming Examples.”

¢ “Interface Check using HP Basic and GPIB” on page 26
¢ “Interface Check Using NI-488.2 and C++” on page 26

Before Using the GPIB Examples

If the Agilent GPIB interface card is used, the Agilent VISA library should be installed along with
Agilent SICL. If the National Instruments PCI-GPIB interface card is used, the NI-VISA library along
with the NI-488.2 library should be installed. Refer to “Selecting 10 Libraries for GPIB” on page 7
and the documentation for your GPIB interface card for details.

HP Basic addresses the signal generator at 719. The GPIB card is addressed at 7 and the signal
generator at 19. The GPIB address designator for other libraries is typically GPIBO or GPIBI.

The following sections contain HP Basic and C++ lines of programming removed from the
programming interface examples in Chapter 3, “Programming Examples.” these portions of
programming demonstrate the important features to consider when developing programming for use
with the GPIB interface.

Interface Check using HP Basic and GPIB

This portion of the example program “Interface Check using HP Basic and GPIB” on page 26, causes
the signal generator to perform an instrument reset. The SCPI command * RST places the signal
generator into a pre-defined state and the remote annunciator (R) appears on the front panel display.

The following program example is available on the signal generator Documentation CD-ROM as
basicex1.txt. For the full text of this program, refer to “Interface Check using HP Basic and GPIB” on
page 74 or to the signal generator’s documentation CD-ROM.

160 Sig_gen=719 ! Declares a variable to hold the signal generator's address

170 LOCAL Sig_gen ! Places the signal generator into Local node

180 CLEAR Sig_gen ! Cears any pending data I/O and resets the parser

190 REMOTE 719 ! Puts the signal generator into renote node

200 CLEAR SCREEN ! Cears the controllers display

210 REMOTE 719

220 QUTPUT Sig_gen;"*RST" ! Places the signal generator into a defined state

Interface Check Using NI-488.2 and C++

This portion of the example program “Interface Check Using NI-488.2 and C++” on page 26, uses the
NI-488.2 library to verify that the GPIB connections and interface are functional.

The following program example is available on the signal generator Documentation CD-ROM as
ni ex1. cpp. For the full text of this program, refer to “Interface Check Using NI-488.2 and C++” on
page 75 or to the signal generator’s documentation CD-ROM.

26 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

#i ncl ude "stdafx. h"

#i ncl ude <i ostrean»
#i ncl ude "w ndows. h"
#i ncl ude "Decl -32. h"
usi ng namespace std;

int GPlBO= 0; /1 Board handl e

Using 10 Interfaces
GPIB Programming Interface Examples

Addr 4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

{
int sig; 11
sig = ibdev(0, 19, 0, 13, 1, 0); //
ibclr(sig); I
ibwt(sig, "*RST", 4); 11

Decl ares a device descriptor variable

Aquires a device descriptor

Sends device clear nessage to signal generator
Pl aces the signal generator into a defined state

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 27

Using 10 Interfaces
Using LAN

Using LAN

The Agilent MXG is capable of 100Base-T LAN communication. The ESG, PSG, and E8663B are
designed to connect with a 10Base-T LAN. Where auto-negotiation is present, the ESG, PSG, and
E8663B can connect to a 100Base-T LAN, but communicate at 10Base-T speeds. For more
information refer to http;//www.ieee.org.

The signal generator can be remotely programmed via a 100Base-T LAN interface or 10Base-T LAN
interface and LAN-connected computer using one of several LAN interface protocols. The LAN allows
instruments to be connected together and controlled by a LAN-based computer. LAN and its
associated interface operations are defined in the IEEE 802.2 standard. For more information refer to
http://www.ieee.org.

NOTE For more information on configuring your signal generator for LAN, refer to the User’s Guide
for your signal generator.

The signal generator supports the following LAN interface protocols:

e VXI-11 (See page 40)
* LXI (Agilent MXG only)

NOTE The Agilent MXG is LXI Class C compliant. For more information on the LXI standards, refer
to http://www.Ixistandard.org/home.

* Sockets LAN (See page 41)
¢ Telephone Network (TELNET) (See page 42)
¢ File Transfer Protocol (FTP) (See page 46)

VXI-11 and sockets LAN are used for general programming using the LAN interface, TELNET is used
for interactive, one command at a time instrument control, and FTP is for file transfer.

NOTE For more information on configuring the signal generator to communicate over the LAN,
refer to “Using VXI-11” on page 40.

The following sections contain information on selecting and connecting IO libraries and LAN interface
hardware that are required to remotely program the signal generator via LAN to a LAN-based
computer and combining those choices with one of several possible LAN interface protocols.

¢ “Setting Up the LAN Interface” on page 29
e “Verifying LAN Functionality” on page 36

28 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Setting Up the LAN Interface

For LAN operation, the signal generator must be connected to the LAN, and an IP address must be
assigned to the signal generator either manually or by using DHCP client service. Your system
administrator can tell you which method to use.

NOTE Verify that the signal generator is connected to the LAN using a 100Base-T LAN or 10Base-T
LAN cable. For more information on 100Base-T LAN and 10Base-T LAN, refer to “Using
LAN” on page 28.

Configuring the VXI-11 for LAN (Agilent MXG)

__I/0 Confiag LAN Services Reconfigure 7
Utility > 10 Confi FTP Seruer e T
tility > onfi GPIE Setupw = nstrumen
y g _ o P 0fF will Reboot)
LAN Setip M PRGN
LAN Serwvices Sockets SCPI
Setup?] — OFF

L™ N WKI-11 SCPI
OFF

Proceed Hith
Reconf igurat ion*

NOTE

To communicate with the signal generator over the LAN, you must enable the VXI-11 SCPI service. Select VXI-11
until On is highlighted. (Default condition is On.)

For optimum performance, use a 100Base-T LAN cable to connect the signal generator to the LAN.

For details on each key, use the key help. For information describing the key help, refer to “Setting the Help Mode (Agilent MXG)” on
page 18 and the User’s Guide. For additional SCPI command information, refer to the SCPI Command Reference.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 29

Using 10 Interfaces
Using LAN

Configuring the VXI-11 for LAN (ESG/PSG/E8663B)

GPIB Address FTP Server Confirm Change
[O | (Instrument
K A7 Ln will Reboot)
Utility > GPIB/RS-232
Femote Language leb Server
LAN —> IGhigl OfF

Sockets SCRI
RS-232 Setuph Off

LAN Setupk HIB%% Sgﬁl
—

LAM Services
Setup*| —>

\“‘“‘“\M_._ For details on each key, use the Key and Data Field

Reference. For additional SCPI command
information, refer to the SCPI Command Reference.

Proceed| Hith
Reconf iourat ion

NOTE
To communicate with the signal generator over the LAN, you must enable the VXI-11 SCPI service. Select VXI-11 until On is highlighted.

(Default condition is On.)

Use a 10Base-T LAN cable to connect the signal generator to the LAN.Where auto-negotiation is present, the ESG, PSG, or E8663B can
connect to 100Base-T LAN, but will communicate at 10Base-T speeds. For more information refer to http://www.ieee.org.

Manual Configuration
The Hostname softkey is only available when LAN Config Manual DHCP is set to Manual.

To remotely access the signal generator from a different LAN subnet, you must also enter the subnet
mask and default gateway. See your system administrator for more information.

For more information on the manual configuration, refer to “Manually Configuring the Agilent MXG
LAN” on page 31 or to “Manually Configuring the ESG/PSG/E8663B LAN” on page 31.

30 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Manually Configuring the Agilent MXG LAN

Utility > 10 Config

I1/0 Config

GPIE Setups

Hostname

/

LAN Setupw

Setup

LAN Seruicesb

anual Config
Settinos®

Your hostname can be up to 20 characters long.

SCPI commands:

PV NV

Advanced
Settinos®

Proceed Hith
Reconfigurat.ion®

: SYSTem COMMUNI cat e: LAN: CONFi g MANual
: SYSTem COMMuNI cat e: LAN: CONFi g?

Congdo Tupe >
///%ﬁ;nual)'

LAH Config 7

Auto
(OHCP /Auto-IP)

OHCP

Manual

Using 10 Interfaces
Using LAN

Reconfigure #
Confirm Chanoe
(Instrument
Will Reboot)

Laann, oot |

For details on each key, use the key help (described in User’'s Guide). For additional SCPI command information, refer to the SCPI

Command Reference.

Manually Configuring the ESG/PSG/E8663B LAN

Utility > 10 Config

GPIB Address

19
Remote Language,
(5CPI
RS-232 Setupk

LAN Setupk

LAN Services,
Setup

Natnty, |

Hostname
COBRALPL

IF Address
141,121.60.53

Subnet. Mask

Default Gatewad

LAk Config
OHCP

Proceed Hith
Reconf iourat ion

Confirm Chanoe
(Instrument/
Will Hebo;t)

/

/

A

The Hostname softkey is available only when LAN Config Manual DHCP is set to
Manual. Your hostname can be up to 20 characters long.

SCPI commands:

: SYSTem COMMUNI cat e: LAN: CONFi g MANual
: SYSTem COMMuNI cat e: LAN: CONFi g?

For details on each key, use the Key and Data Field
Reference. For additional SCPI command information, refer

to the SCPI Command Reference.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

31

Using 10 Interfaces
Using LAN

DHCP Configuration

If the DHCP server uses dynamic DNS to link the hostname with the assigned IP address, the
hostname may be used in place of the IP address. Otherwise, the hostname is not usable.

For more information on the DHCP configuration, refer to “Configuring the DHCP LAN (Agilent
MXG)” on page 33 or “Configuring the DHCP LAN (ESG/PSG/E8663B)” on page 34.

AUTO (DHCP/Auto-IP) Configuration (Agilent MXG only)

DHCP and Auto-IP are used together to make automatic (AUTO) mode for IP configuration.
Automatic mode attempts DHCP first and then if that fails Auto-IP is used to detect a private
network. If neither is found, Manual is the final choice.

If the DHCP server uses dynamic DNS to link the hostname with the assigned IP address, the
hostname may be used in place of the IP address. Otherwise, the hostname is not usable.

Auto-IP provides automatic TCP/IP set-up for instruments on any manually configured networks.

For more information on the AUTO (DHCP/Auto-IP) configuration, refer to “Configuring the DHCP
LAN (Agilent MXG)” on page 33.

32 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Configuring the DHCP LAN (Agilent MXG)

AUTO (DHCP/Auto-IP): Request a new IP address in the following sequence: 1) from the DHCP (server-based
LAN), 2) Auto-IP (private network without a network administrator) or if neither is available, 3) Manual setting is
selected.

DHCP: Request a new IP address from the DHCP server each power cycle.

Confirming this action configures the signal generator as a DHCP client. In DHCP mode, the signal generator
will request a new IP address from the DHCP server upon rebooting to determine the assigned IP address.

i [LAH Confia 7|
T/0 Config LAH Setup /| LAN Confi
Auto
GPIB Setupk OSETES (OHCP /AUto-IF)
LAN Setups ED”» — DHCP
Utility > 10 Config
- i Manual Config Hanual
LN Sergégﬁg’ — Settings®
N Advanced Lot urnss
Settinos®
Proceed With b . _ _ _ _ _ __ =
Reconfigurat.ion® —»| Reconfigure /7
Confirm Chanoe
(Instrument

SCPI conmands: Will Reboot)

: SYSTem COMMuNIi cat e: LAN: CONFi g DHCP| AUTO

: SYSTem COMMuni cat e: LAN: CONFi g? e SO

For details on each key, use the key help (described in User’s Guide). For additional SCPI command information,
refer to the SCPI Command Reference.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 33

Using 10 Interfaces
Using LAN

Configuring the DHCP LAN (ESG/PSG/E8663B)

Utility

Errar, |

Tnfo GPIB nddreig

GPIB/RS-232, 1 o | Remote Language
Lritr™ (SCPTYY
Instrument.,
Adjustments RS-232 Setupk
Displaue LAN Setupw
Power On/ i
Eracot LAN Sergégﬁg,

Memory Catalog

| Instrument Info/,|
Help Mode

Y

Hostname
COBRALP1L

IF Address
141,121.60.53

Subnet. Mask

Default Gatewad

LAk
[anual

Proceed Lith,
Reconf igdrat ion

DHCP: Request a new IP address from the DHCP server each poy(er

cycle.

Confirming this action configures the signal generator as a DHCP client.
In DHCP mode, the signal generator will request a new IP address from
the DHCP server upon rebooting to determine the assigned IP address.

Confirm Chanoe
(Instrument
Will Reboot)

NOTE
Use a 10Base-T LAN cable to connect the signal
generator to the LAN.

For details on each key, refer to the Key and Data Field
Reference. For additional SCPI command information,
refer to the SCPI Command Reference.

SCPI conmmands:
: SYSTem COWMMuNi cat e: LAN: CONFi g DHCP
: SYSTem COMMuNIi cat e: LAN: CONFi g?

34 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Setting up Private LAN

You can connect the Agilent MXG, ESG, PSG or E8663B directly to a PC using a crossover cable. To
do this, you should either choose to set IP addresses of the PC and signal generator to differ only in
the last digit (example: PC’s TCP-IP: 1.1.1.1 and Signal generator’s IP: 1.1.1.2); or you can use the
DHCP feature or Auto-IP feature if your PC supports them. For more information go to
www.agilent.com, and search on the Connectivity Guide (E2094-90009) or use the Agilent
Connection Expert’s Help to see the Connection Guide.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 35

Using 10 Interfaces
Using LAN

Verifying LAN Functionality

Verify the communications link between the computer and the signal generator remote file server
using the ping utility. Compare your ping response to those described in Table 2-1 on page 37.

NOTE For additional information on troubleshooting your LAN connection, refer to “If You Have
Problems” on page 25 and to the Help in the Agilent 10 Libraries and documentation for
LAN connections and problems.

From a UNIX® workstation, type (UNIX is a registered trademark of the Open Group):
pi ng <hostnane or | P address> 64 10

where <host nane or | P address> is your instrument’s name or IP address, 64 is the packet size,
and 10 is the number of packets transmitted. Type man pi ng at the UNIX prompt for details on the
ping command.

From the MS-DOS’ Command Prompt or Windows environment, type:

ping -n 10 <hostnane or |P address>

where <host nane or | P addr ess> is your instrument’s name or IP address and 10 is the number of
echo requests. Type pi ng at the command prompt for details on the ping command.

NOTE In DHCP mode, if the DHCP server uses dynamic DNS to link the hostname with the
assigned IP address, the hostname may be used in place of the IP address. Otherwise, the
hostname is not usable and you must use the IP address to communicate with the signal
generator over the LAN.

If You Have Problems

If you are experiencing problems with the LAN connection on the signal generator, verify the rear
panel LAN connector green LED is on.

For additional information on troubleshooting your LAN connection, refer to the Help in the Agilent
IO Libraries and documentation for LAN connections and problems.

MS-DOS, and Visual Basic are registered trademarks of Microsoft.

36 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Table 2-1 Ping Responses

Using 10 Interfaces
Using LAN

Normal Response for UNIX

A normal response to the ping command will be a total of 9 or 10 packets received with a
minimal average round-trip time. The minimal average will be different from network to
network. LAN traffic will cause the round-trip time to vary widely.

Normal Response for DOS or
Windows

A normal response to the ping command will be a total of 9 or 10 packets received if 10 echo
requests were specified.

Error Messages

If error messages appear, then check the command syntax before continuing with
troubleshooting. If the syntax is correct, resolve the error messages using your network
documentation or by consulting your network administrator.

If an unknown host error message appears, try using the IP address instead of the hostname.
Also, verify that the host name and IP address for the signal generator have been registered
by your IT administrator.

Check that the hostname and IP address are correctly entered in the node names database. To
do this, enter the nsl ookup <host nane> command from the command prompt.

No Response

If there is no response from a ping, no packets were received. Check that the typed address
or hostname matches the IP address or hostname assigned to the signal generator in the
System LAN Setup menu. For more information, refer to “Configuring the DHCP LAN (Agilent
MXG)” on page 33 or “Configuring the DHCP LAN (ESG/PSG/E8663B)” on page 34.

Ping each node along the route between your workstation and the signal generator, starting
with your workstation. If a node doesn’t respond, contact your IT administrator.

If the signal generator still does not respond to ping, you should suspect a hardware problem.

® Check the signal generator LAN connector lights
® Verify the hostname is not being used with DHCP addressing

Intermittent Response

If you received 1 to 8 packets back, there maybe a problem with the network. In networks
with switches and bridges, the first few pings may be lost until these devices ‘learn’ the
location of hosts. Also, because the number of packets received depends on your network
traffic and integrity, the number might be different for your network. Problems of this nature
are best resolved by your IT department.

Using Interactive 10

Use the VISA Assistant utility available in the Agilent 10 Libraries Suite to verify instrument
communication over the LAN interface. Refer to the section on the “IO Libraries and Programming
Languages” on page 5 for more information.

The Agilent I0 Libraries Suite is supported on all platforms except Windows NT. If you are using
Windows NT, refer to section below on using the VISA Assistant to verify LAN communication. See
the section on “Windows NT and Agilent I0 Libraries M (and Earlier)” on page 6 for more

information.

NOTE The following sections are specific to Agilent I0 Libraries versions M and earlier and apply
only to the Windows NT platform.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

37

Using 10 Interfaces
Using LAN

Using VISA Assistant

Use the VISA Assistant, available with the Agilent I0 Library versions M and earlier, to communicate
with the signal generator over the LAN interface. However, you must manually configure the VISA
LAN client. Refer to the Help menu for instructions on configuring and running the VISA Assistant
program.

Run the I0 Config program.

Click on TCPIPO in the Available Interface Types text box.

Click the Configure button. Then Click OK to use the default settings.

Click on TCPIPO in the Configured Interfaces text box.

Click Edit...

Click the Edit VISA Config... button.

Click the Add device button.

Enter the TCPIP address of the signal generator. Leave the Device text box empty.

© 0 NS Ok W

Click the OK button in this form and all subsequent forms to exit the I0 Config program.

If You Have Problems
1. Verify the signal generator’s IP address is valid and that no other instrument is using the IP
address.

2. Switch between manual LAN configuration and DHCP using the front- panel LAN Config softkey and
run the ping program using the different IP addresses.

NOTE For Agilent 10 Libraries versions M and earlier, you must manually configure the VISA LAN
client in the IO Config program if you want to use the VISA Assistant to verify LAN
configuration. Refer to the I0 Libraries Installation Guide for information on configuring 10
interfaces. The I0 Config program interface is shown in Figure 2-4 on page 41.

38 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Figure 2-3 10 Config Form (Windows NT)

nterface Descriptiol

*R5-232 COM Ports

W54 LaM Client (2.9, E5810]
“82350 PCI GPIB Card
82341 154 GPIB Card

82357 USE to GPIB

WISA LaN Client (2.0, ESS10)
GPIB %<l Command Module
“LAMN Client [LAM Instruments
*USE Instruments

WISA LaN Client for USE
*E8491 [EEE-1394 to il
LAM Server [PC as Server]

Check to see that the Default Protocol is set to Automatic.
1. Run the IO Config program

2. Click on TCPIP in the Configured Interfaces text box. If there is no TCPIPO in the box, follow the
steps shown in the section “Using VISA Assistant” on page 38

3. Click the Edit button.
Click the radio button for AUTO (automatically detect protocol).
Click OK, OK to end the IO Config program.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 39

Using 10 Interfaces
Using LAN

Using VXI-11

The signal generator supports the LAN interface protocol described in the VXI-11 standard. VXI-11 is
an instrument control protocol based on Open Network Computing/Remote Procedure Call (ONC/RPC)
interfaces running over TCP/IP. It is intended to provide GBIB capabilities such as SRQ (Service
Request), status byte reading, and DCAS (Device Clear State) over a LAN interface. This protocol is a
good choice for migrating from GPIB to LAN as it has full Agilent VISA/SICL support.

NOTE It is recommended that the VXI-11 protocol be used for instrument communication over the
LAN interface.

Configuring for VXI-11

The Agilent IO library has a program, I0 Config, that is used to setup the computer/signal generator
interface for the VXI-11 protocol. Download the latest version of the Agilent 10 library from the
Agilent website. Refer to the Agilent 10 library user manual, documentation, and Help menu for
information on running the I0 Config program and configuring the VXI-11 interface.

Use the 10 Config program to configure the LAN client. Once the computer is configured for a LAN
client, you can use the VXI-11 protocol and the VISA library to send SCPI commands to the signal
generator over the LAN interface. Example programs for this protocol are included in “LAN
Programming Interface Examples” on page 108 of this programming guide.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI- 11 SCPI service. For more information, refer to “Configuring the DHCP LAN (Agilent
MXG)” on page 33 and “Configuring the DHCP LAN (ESG/PSG/E8663B)” on page 34.

If you are using the Windows NT platform, refer to “Windows NT and Agilent I0 Libraries M
(and Earlier)” on page 6 for information on using Agilent 10 Libraries versions M or earlier
to configure the interface.

For Agilent IO library version J.01.0100, the “Identify devices at run-time” check box must be
unchecked. Refer to Figure 2-4.

40 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Figure 2-4 Show Devices Form (Agilent IO Library version J.01.0100)

Show Devices |
_ (]
[ddentify devices at run-time
Cancel
Devices prezent on interface GPIET:
Add device

Bemove device

Auto Add devices

Using Sockets LAN

NOTE Windows XP operating systems and newer can use this section to better understand how to
use the signal generator with port settings. For more information, refer to the help software
of the IO libraries being used.

Sockets LAN is a method used to communicate with the signal generator over the LAN interface
using the Transmission Control Protocol/Internet Protocol (TCP/IP). A socket is a fundamental
technology used for computer networking and allows applications to communicate using standard
mechanisms built into network hardware and operating systems. The method accesses a port on the
signal generator from which bidirectional communication with a network computer can be
established.

Sockets LAN can be described as an internet address that combines Internet Protocol (IP) with a
device port number and represents a single connection between two pieces of software. The socket
can be accessed using code libraries packaged with the computer operating system. Two common
versions of socket libraries are the Berkeley Sockets Library for UNIX systems and Winsock for
Microsoft operating systems.

Your signal generator implements a sockets Applications Programming Interface (API) that is
compatible with Berkeley sockets, for UNIX systems, and Winsock for Microsoft systems. The signal
generator is also compatible with other standard sockets APIs. The signal generator can be controlled
using SCPI commands that are output to a socket connection established in your program.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 41

Using 10 Interfaces
Using LAN

Before you can use sockets LAN, you must select the signal generator’s sockets port number to use:

¢ Standard mode. Available on port 5025. Use this port for simple programming.
¢ TELNET mode. The telnet SCPI service is available on port 5023.

NOTE On the E8663B, ESG, and PSG, the signal generator accepts references to the Telnet SCPI
service at port 7777 and sockets SCPI service at port 7778.

Ports 7777 and 7778 are disabled on the Agilent MXG.

An example using sockets LAN is given in “LAN Programming Interface Examples” on page 108 of
this programming guide.

Using Telnet LAN

Telnet provides a means of communicating with the signal generator over the LAN. The Telnet client,
run on a LAN connected computer, will create a login session on the signal generator. A connection,
established between computer and signal generator, generates a user interface display screen with
SCPI > prompts on the command line.

Using the Telnet protocol to send commands to the signal generator is similar to communicating with
the signal generator over GPIB. You establish a connection with the signal generator and then send
or receive information using SCPI commands. Communication is interactive: one command at a time.

NOTE The Windows 2000 operating systems use a command prompt style interface for the Telnet
client. Refer to the Figure 2-7 on page 45 for an example of this interface.

Windows XP operating systems and newer can use this section to better understand how to
use the signal generator with port settings. For more information, refer to the help software
of the IO libraries being used.

The following telnet LAN connections are discussed:

¢ “Using Telnet and MS-DOS Command Prompt” on page 42

¢ “Using Telnet On a PC With a Host/Port Setting Menu GUI” on page 43
¢ “Using Telnet On Windows 2000” on page 44

¢ “The Standard UNIX Telnet Command” on page 45

A Telnet example is provided in “Unix Telnet Example” on page 45.

Using Telnet and MS-DOS Command Prompt
1. On your PC, click Start > Programs > Command Prompt.

2. At the command prompt, type in t el net.
3. Press the Enter key. The Telnet display screen will be displayed.
4. Click on the Connect menu then select Remote System. A connection form (Figure 2-5) is displayed.

42 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Figure 2-5 Connect Form (Agilent 10 Library version J.01.0100)

Host Name: IInstrument name j

Port: |5[|23 =

TermType: Im vI
Connect | Cancel |

5. Enter the hostname, port number, and TermType then click Connect.

¢ Host Name—-IP address or hostname
¢ Port-5023
e Term Type—vt100

6. At the SCPI > prompt, enter SCPI commands. Refer to Figure 2-6 on page 44.
To signal device clear, press Ctrl-C on your keyboard.

8. Select Exit from the Connect menu and type exit at the command prompt to end the Telnet
session.

Using Telnet On a PC With a Host/Port Setting Menu GUI
1. On your PC, click Start > Run.

2. Type t el net then click the OK button. The Telnet connection screen will be displayed.

3. Click on the Connect menu then select Remote System. A connection form is displayed. See Figure
2-5.

4. Enter the hostname, port number, and TermType then click Connect.

¢ Host Name-signal generator’s IP address or hostname
* Port-5023
e Term Type—vt100

At the SCPI > prompt, enter SCPI commands. Refer to Figure 2-6 on page 44.
To signal device clear, press Ctrl-C.

Select Exit from the Connect menu to end the Telnet session.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 43

Using 10 Interfaces
Using LAN

Figure 2-6 Telnet Window (Windows 2000)

% Telnet - lpvipl [_[C]x]
LConnect Edit Teminal Help

Agilent Technologies, E8254A SN-USG0000064

Firmware: Har 28 2081 11:23:18

Hostname: 88081p1

IP : 000 .500.00.000

SCPI> =IDN?
Agilent Technologies, E8254A, USOE088064, C.01.00
SCPI> =RST

SCPI> POW:AMPL -18 dbm

SCPI> POW?

-1.800008006E+ 081

scp1> i

Using Telnet On Windows 2000
1. On your PC, click Start > Run.

2. Type t el net in the run text box, then click the OK button. The Telnet connection screen will be
displayed. See Figure 2-7 on page 45 (Windows 2000).

Type open at the prompt and then press the Enter key. The prompt will change to (t 0).

At the (t 0) prompt, enter the signal generator’s IP address followed by a space and 5023, which
is the Telnet port associated with the signal generator.

5. At the SCPI > prompt, enter SCPI commands. Refer to commands shown in Figure 2-6 on
page 44.

6. To escape from the SCPI> session type Ctrl-].
Type quit at the prompt to end the Telnet session.

44 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Figure 2-7 Telnet 2000 Window

;’ C:\WINNT \system32'\telnet.exe

Microsoft (R> Windows 2888 (TI"I). Uersion 5.88 (Build 2195%>
Welcome to Microsoft Telnet Client
Telnet Client Build 5.8@8.99286.1

Ezcape Character iz ‘CTRL+1’

Microsoft Telnet>

The Standard UNIX Telnet Command

Synopsis
tel net [host [port]]

Description

This command is used to communicate with another host using the Telnet protocol. When the
command t el net is invoked with host or port arguments, a connection is opened to the host, and
input is sent from the user to the host.

Options and Parameters

The command t el net operates in character-at-a-time or line-by-line mode. In line-by-line mode,
typed text is echoed to the screen. When the line is completed (by pressing the Enter key), the text
line is sent to host. In character-at-a-time mode, text is echoed to the screen and sent to host as it
is typed. At the UNIX prompt, type man tel net to view the options and parameters available with
the tel net command.

NOTE If your Telnet connection is in line-by-line mode, there is no local echo. This means you
cannot see the characters you are typing until you press the Enter key. To remedy this,
change your Telnet connection to character-by-character mode. Escape out of Telnet, and at
the t el net > prompt, type node char. If this does not work, consult your Telnet program's
documentation.

Unix Telnet Example

To connect to the instrument with host name nyl nstrunent and port number 5023, enter the
following command on the command line: t el net nyl nstrunent 5023.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 45

Using 10 Interfaces
Using LAN

When you connect to the signal generator, the UNIX window will display a welcome message and a
SCPI command prompt. The instrument is now ready to accept your SCPI commands. As you type
SCPI commands, query results appear on the next line. When you are done, break the Telnet
connection using an escape character. For example, G rl -] ,where the control key and the] are
pressed at the same time. The following example shows Telnet commands:

$ telnet nyinstrunent 5023

Trying. ...

Connected to signal generator

Escape character is ‘"]’

Agi | ent Technol ogi es, E44xx SN-US00000001

Fi r mrar e:

Host name: your instrunent

1P XXX, XX, XXX. XXX

SCPI >

Using FTP

FTP allows users to transfer files between the signal generator and any computer connected to the
LAN. For example, you can use FTP to download instrument screen images to a computer. When
logged onto the signal generator with the FTP command, the signal generator’s file structure can be
accessed. Figure 2-8 shows the FTP interface and lists the directories in the signal generator’s user
level directory.

NOTE File access is limited to the signal generator’s /user directory.

46 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Figure 2-8 FTP Screen

Using 10 Interfaces
Using LAN

% Command Prompt - ftp 000.000.00.000
<C> Copyrights 1985-1996 Microsoft Corp.

C:\>ftp 000.000.00.000

connected to 000.000.00.000.

220- Agilent Technologies. E8254A SN-US00000004
220- Firmware: Mar.28.2001 11:23:18

220- Hostname: 000lp1

220- 1P : 000.000.00.000

220- FTP server <Version 1.0> ready.

User <000.000.00.000:<none> >:

331 Password required

Password:

230 Successful login

ftp> 1s

200 Port command successful.

150 Opening data connection.

USER

226 Transfer complete.

35 bytes received in 0.00 seconds <35000.00 Kbytes/sec>
ftp> _

The following steps outline a sample FTP session from the MS-DOS Command Prompt:
1. On the PC click Start > Programs > Command Prompt.
2. At the command prompt enter:
ftp < 1P address > or < host narme >
3. At the user name prompt, press enter.
At the password prompt, press enter.

You are now in the signal generator’s user directory. Typing hel p at the command
show you the FTP commands that are available on your system.

Type quit or bye to end your FTP session.

Type exit to end the command prompt session.

ce917a

prompt will

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

47

Using 10 Interfaces
Using RS-232 (ESG, PSG, and E8663B Only)

Using RS-232 (ESG, PSG, and E8663B Only)

NOTE The RS-232 serial interface is available on the ESG signal generators.

The PSG and E8663B’s AUXILIARY INTERFACE connector is compatible with ANSI/EIA232
(RS-232) serial connection but GPIB and LAN are recommended for making faster
measurements and when downloading files. Refer to the User’s Guide.

The RS-232 serial interface can be used to communicate with the signal generator. The RS-232
connection is standard on most PCs and can be connected to the signal generator’s rear- panel
connector using the cable described in Table 2-2 on page 51. Many functions provided by GPIB, with
the exception of indefinite blocks, parallel polling, serial polling, GET, non- SCPI remote languages,
SRQ, and remote mode are available using the RS-232 interface.

The serial port sends and receives data one bit at a time, therefore RS-232 communication is slow.
The data transmitted and received is usually in ASCII format with SCPI commands being sent to the
signal generator and ASCII data returned.

The following sections contain information on selecting and connecting IO libraries and RS-232
interface hardware on the signal generator to a computer’s RS-232 connector.

¢ “Selecting IO Libraries for RS-232" on page 48
o “Setting Up the RS-232 Interface” on page 50
e “Verifying RS-232 Functionality” on page 52

Selecting 10 Libraries for RS-232

The IO libraries can be downloaded from the National Instrument website, hitp:/www.ni.com, or
Agilent’s website, http.//www.agilent.com. The following is a discussion on these libraries.

CAUTION Because of the potential for portability problems, running Agilent SICL without the
VISA overlay is not recommended by Agilent Technologies.

HP Basic The HP Basic language has an extensive IO library that can be used to control the
signal generator over the RS-232 interface. This library has many low level
functions that can be used in BASIC applications to control the signal generator
over the RS-232 interface.

VISA VISA is an IO library used to develop 10 applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used
for programming the signal generator. The NI-VISA and Agilent VISA libraries are
similar implementations of VISA and have the same commands, syntax, and
functions. The differences are in the lower level IO libraries used to communicate
over the RS-232; NI-488.2 and SICL respectively.

NI-488.2 NI-488.2 10 libraries can be used to develop applications for the RS-232 interface.
See National Instrument’s website for information on NI-488.2.

48 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using RS-232 (ESG, PSG, and E8663B Only)

SICL Agilent SICL can be used to develop applications for the RS-232 interface. See
Agilent’s website for information on SICL.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 49

Using 10 Interfaces
Using RS-232 (ESG, PSG, and E8663B Only)

Setting Up the RS-232 Interface
1. Setting the RS-232 Interface Baud Rate (ESG/PSG/E8663B)

Utility

GPIB Address RS-232 Baud FRate
Errar, 19 (576007 HEGL
GPIB/RS-232, =TS (EpENEEEA Feset RS-232 38400
Instrument. L RS-232 Setupk RS=z32 Echo
Ad justments® n 19200
Ro_232 Ti & Select a baud
=, 1meoL)
Displauk LAN Setupk e | — > 9600 rate of 9600.
LAW Services
Power On/ »
Freset™ Setup gotl
Memory Catalogh 2400
Instrument. Info/ More
1 HeIp Mode® (1 of 23

SCPI commands:
: SYSTem COMMUNI cat e: SER al : BAUD <nunber >
: SYSTem COMMNI cat e: SER al : BAUD?

For details on each key, use the key help (described in User’s Guide). For additional SCPI command information, refer to the SCPI
Command Reference.

NOTE Use baud rates 57600 or lower only. Select the signal generator’s baud rate to match the
baud rate of your computer or UNIX workstation or adjust the baud rate settings on your
computer to match the baud rate setting of the signal generator.

The default baud rate for VISA is 9600. This baud rate can be changed with the
“VI_ATTR_ASRL_BAUD” VISA attribute.

50 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using RS-232 (ESG, PSG, and E8663B Only)

2. Setting the RS-232 Echo Softkey

Utility

GPIB Address RS-232 Baud_Rate
Borer, 19 {575007"
GPIB/RS-232, =TS (EpENEEEA Reset RS-232
LAN
e RS-232 Setuptf—- Rsiatae L Toggle RS-232 Echo Off On until Off is
highlighted. Selecting On echoes or returns
g characters sent to the signal generator and
RS-232 Timeout "
Displau LR Sty 25 gec prints them to the display.
LAM Services
Power On/ »
Freset? Setup
Memory Catalog
SCPI commands:
: SYSTem COMMUNI cat e: SER al : ECHO ON| GFF
Instrument Info/ .
1 Help Modef : SYSTem COMMuNi cat e: SER al : ECHO?

For details on each key, use the key help (described in User’s Guide). For additional SCPI command information, refer to the SCPI
Command Reference.

3. Connect an RS-232 cable from the computer’s serial connector to the ESG signal generator’s
RS-232 connector or the PSG or E8663B’s AUXILIARY INTERFACE connector. Refer to Table 2-2 for
RS-232 cable information.

Table 2-2 RS-232 Serial Interface Cable

Quantity Description Agilent Part Number

1 Serial RS-232 cable 9-pin (male) to 9-pin (female) 8120-6188

NOTE Any 9 pin (male) to 9 pin (female) straight-through cable that directly wires pins 2, 3, 5, 7,
and 8 may be used.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 51

Using 10 Interfaces
Using RS-232 (ESG, PSG, and E8663B Only)

Verifying RS-232 Functionality

You can use the HyperTerminal program available on your computer to verify the RS-232 interface
functionality. To run the HyperTerminal program, connect the RS-232 cable between the computer
and the signal generator and perform the following steps:

1. On the PC click Start > Programs > Accessories > Communications > HyperTerminal.
Select HyperTerminal.

Enter a name for the session in the text box and select an icon.

Select COM1 (COM2 can be used if COM1 is unavailable).

oros o

In the COM1 (or COM2, if selected) properties, set the following parameters:

¢ Bits per second: 9600 must match signal generator’s baud rate; for more information, refer to
“Setting Up the RS-232 Interface” on page 50.

e Data bits: 8
* Parity: None
e Stop bits: 1

o Flow Control: None

NOTE Flow control, via the RTS line, is driven by the signal generator. For the purposes of this
verification, the controller (PC) can ignore this if flow control is set to None. However, to
control the signal generator programmatically or download files to the signal generator, you
must enable RTS-CTS (hardware) flow control on the controller. Note that only the RTS line
is currently used.

6. Go to the HyperTerminal window and select File > Properties.

7. Go to Settings > Emulation and select VT100.

8. Leave the Backscroll buffer lines set to the default value.

9. Go to Settings > ASCII Setup.

10. Check the first two boxes and leave the other boxes as default values.

Once the connection is established, enter the SCPI command *| DN? followed by <Ctrl j> in the
HyperTerminal window. The <Ctrl j > is the new line character (on the keyboard press the Cntrl key
and the j key simultaneously).

The signal generator should return a string similar to the following, depending on model:

Agilent Technologies <imstrument model name and number>, USA40000001, C. 02. 00

52 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using RS-232 (ESG, PSG, and E8663B Only)

Character Format Parameters

The signal generator uses the following character format parameters when communicating via RS-232:

¢ Character Length: Eight data bits are used for each character, excluding start, stop, and parity
bits.

¢ Parity Enable: Parity is disabled (absent) for each character.

* Stop Bits: One stop bit is included with each character.

If You Have Problems

1. Verify that the baud rate, parity, and stop bits are the same for the computer and signal
generator.

Verify that the RS-232 cable is identical to the cable specified in Table 2-2.

3. Verify that the application is using the correct computer COM port and that the RS-232 cable is
properly connected to that port.

4. Verify that the controller’s flow control is set to RTS-CTS.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 53

Using 10 Interfaces
RS-232 Programming Interface Examples

RS-232 Programming Interface Examples

NOTE The portions of the programming examples discussed in this section are taken from the full
text of these programs that can be found in Chapter 3, “Programming Examples.”

¢ “Interface Check Using HP BASIC” on page 54

¢ “Interface Check Using VISA and C” on page 55

¢ “Queries Using HP Basic and RS-232” on page 55

¢ “Queries for RS-232 Using VISA and C” on page 56

Before Using the Examples

Before using the examples: On the signal generator select the following settings:

¢ Baud Rate - 9600 must match computer’s baud rate
¢ RS-232 Echo - Off

The following sections contain HP Basic and C lines of programming removed from the programming
interface examples in Chapter 3, Programming Examples,, these portions of programming demonstrate
the important features to consider when developing programming for use with the RS-232 interface.

NOTE For LAN programming examples, refer to “LAN Programming Interface Examples” on
page 108.

Interface Check Using HP BASIC

This portion of the example program “Interface Check Using HP BASIC” on page 54, causes the signal
generator to perform an instrument reset. The SCPI command *RST will place the signal generator
into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used is
COM1 (Serial A on some computers). Refer to “Using RS-232 (ESG, PSG, and E8663B Only)” on
page 48 for more information.

The following program example is available on the signal generator’s Documentation CD-ROM as
rs232ex1.txt. For the full text of this program, refer to “Interface Check Using HP BASIC” on
page 140 or to the signal generator’s documentation CD-ROM.

170 CONTROL 9, 0; 1 ! Resets the RS-232 interface

180 CONTROL 9, 3; 9600 ! Sets the baud rate to match the sig gen
190 STATUS 9, 4; St at ! Reads the value of register 4

200 NunvBI NAND(Stat, 7) ! Gets the AND val ue

210 CONTROL 9, 4; Num | Sets parity to NONE

220 QUTPUT 9; "*RST" ! Qutputs reset to the sig gen

54 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
RS-232 Programming Interface Examples

Interface Check Using VISA and C

This portion of the example program “Interface Check Using VISA and C” on page 55, uses VISA
library functions to communicate with the signal generator. The program verifies that the RS-232
connections and interface are functional. In this example the COM2 port is used. The serial port is
referred to in the VISA library as ‘ASRL1’ or ‘ASRL2’ depending on the computer serial port you are
using.

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex1.cpp. For the full text of this program, refer to “Interface Check Using VISA and C” on
page 141 or to the signal generator’s documentation CD-ROM.

int baud=9600;// Set baud rate to 9600

Vi Session defaul tRM vi;// Declares a variable of type Vi Session
/1 for instrunent comuni cation on COM 2 port
Vi Status viStatus = 0;
/1 Opens session to RS-232 device at serial port 2
vi St at us=vi OpenDef aul t RM &def aul t RV ;
vi St at us=vi Open(defaul tRM "ASRL2::INSTR', VI _NULL, VI _NULL, &i);

vi St at us=vi Enabl eEvent (vi, VI_EVENT_| O COMPLETI ON, VI _QUEUE, VI _NULL);

viCear(vi);// Sends device clear command

I/ Set attributes for the session

vi SetAttribute(vi,VI_ATTR ASRL_BAUD, baud) ;

vi SetAttribute(vi,VI_ATTR ASRL_DATA BI TS, 8);

Queries Using HP Basic and RS-232

This portion of the example program “Queries Using HP Basic and RS-232” on page 55, example
program demonstrates signal generator query commands over RS-232. Query commands are of the
type *1 DN? and are identified by the question mark that follows the mnemonic.

Start HP Basic, type in the following commands, and then RUN the program:

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex2.txt. For the full text of this program, refer to “Queries Using HP Basic and RS-232” on
page 143 or to the signal generator’s documentation CD-ROM.

190 QUTPUT 9; "*| DN?" ! Querys the sig gen ID

200 ENTER 9; Str$! Reads the ID

210 VAIT 2 I Waits 2 seconds

220 PRINT "ID =",Str$! Prints IDto the screen

230 QUTPUT 9; "PON AWPL -5 dbni ! Sets the the power level to -5 dbm
240 QUTPUT 9; " PONP" ! Querys the power |evel of the sig gen

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 55

Using 10 Interfaces
RS-232 Programming Interface Examples

Queries for RS-232 Using VISA and C

This portion of the example program “Queries for RS-232 Using VISA and C” on page 56, uses VISA
library functions to communicate with the signal generator. The program verifies that the RS-232
connections and interface are functional.

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex2. cpp. For the full text of this program, refer to “Queries for RS-232 Using VISA and C” on
page 144 or to the signal generator’s documentation CD-ROM.

status = vi OpenDefaul tRM &efaul tRM;// Initializes the system

// Open conmunication with Serial Port 2

status = vi Open(defaul tRM "ASRL2::|NSTR', VI_NULL, VI _NULL, & nstr);

56 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using USB (Agilent MXG Only)

Using USB (Agilent MXG Only)

CAUTION USB cables are not industrial graded and potentially allows data loss in noisy
environments.

USB cables do not have a latching mechanism and the cables can be pulled out of the
PC or instrument relatively easily.

The maximum length for USB cables is 30 m, including the use of inline repeaters.

NOTE The USB interface is available only on the N5181A/82A signal generator.
The Agilent MXG’s USB 2.0 interface supports USBTMC or USBTMC-USB488 specifications.

For more information on connecting instruments to the USB, refer to the Agilent Connection
Expert in the Agilent 10 Libraries Help.

USB 2.0 connectors can be used to communicate with the signal generator. The N5181A/82A is
equipped with an Mini-B rear panel connector (device USB) and can be used to connect a controller
for remote programming by using a Type-A to Mini-USB cable. The Type-A front panel connector
(host USB) can be used to connect a mouse, a keyboard, or a USB 1.1/2.0 flash drive (external
media). ARB waveform encryption of proprietary information is supported. Many functions provided
by GPIB, including GET, non-SCPI remote languages, and remote mode are available using the USB
interface.

NOTE For a list of compatible flash drives to use with the USB external interface. refer to the Data
Sheet.

The following sections contain information on selecting and connecting I/O libraries and the USB
interface that are required to remotely program the signal generator via computer and combining
those choices with one of several possible USB interface protocols.

¢ “Selecting I/O Libraries for USB” on page 57
¢ “Setting Up the USB Interface” on page 59
¢ “Verifying USB Functionality” on page 61

Selecting I/0 Libraries for USB

CAUTION The Agilent MXG’s USB interface requires Agilent I0 Libraries Suite 14.1 or newer to
run properly. For more information on connecting instruments to the USB, refer to the
Agilent Connection Expert in the Agilent 10 Libraries Help.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 57

Using 10 Interfaces
Using USB (Agilent MXG Only)

The I/O libraries can be downloaded from the National Instrument website, http:/www.ni.com, or
Agilent’s website, http.//www.agilent.com. The following is a discussion on these libraries.

NOTE I/O applications such as IVI-COM or VXIplug&play can be used in place of VISA.

VISA VISA is an I/O library used to develop I/O applications and instrument drivers
that comply with industry standards. It is recommended that the VISA library be
used for programming the signal generator. The NI-VISA and Agilent VISA
libraries are similar implementations of VISA and have the same commands,
syntax, and functions. The differences are in the lower level I/O libraries used to
communicate over the USB; NI-488.2 and SICL respectively.

NI-488.2 NI-488.2 1/0 libraries can be used to develop applications for the USB interface.
See National Instrument’s website for information on NI-488.2.

SICL Agilent SICL can be used to develop applications for the USB interface. See
Agilent’s website for information on SICL.

CAUTION Because of the potential for portability problems, running Agilent SICL without the
VISA overlay is not recommended by Agilent Technologies.

58 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using USB (Agilent MXG Only)

Setting Up the USB Interface
Rear Panel Interface (Mini-B)

To use the USB Mini-B rear panel interface, connect the USB cable (Refer to Table 2-3, “USB
Interface Cable,” on page 59, for USB cable information.) between the computer.

Table 2-3 USB Interface Cable

Quantity Description Agilent Part Number

1 USB cable Mini-B to Type-A N2605A-097

Front Panel USB (Type-A)

NOTE The front panel USB (Type-A) accepts flash memory sticks as an alternate non-volatile
storage and is referred to in this documentation as “external media”. For a list of compatible
flash memory sticks, refer to the Data Sheet.

The front panel USB can be used as:
¢ a substitute for the internal (non-volatile) media (internal memory)

¢ a delivery method for PC saved files

NOTE The signal generator does not format external media, create directories, or change file
permissions. Use a computer to perform these operations.

After inserting an USB flash memory device into the Type-A connector on the front panel, refer to
“Using the Internal (Non-volatile Memory) and External (Non-volatile) Storage Media” on page 60°.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 59

Using 10 Interfaces

Using USB (Agilent MXG Only)

Using the Internal (Non-volatile Memory) and External (Non-volatile) Storage Media

| Catalog 7

Catalog Tupe
(AT1)™

Delete File

Auto: Allows for auto-detection of USB external
media (Ext Media). If an external USB flash memory is
inserted to the front panel, a message is displayed,
“External USB Storage attached” and the displayed
menu changes to the External Media menu. When the
external storage media is removed a message is
displayed “External USB Storage detached” and the
External Media menu changes to a neutral menu.

Ext: The non-volatile user file system only references
the external media. This means no non-volatile
memory can be found if there is no external media
attached.

Int: The non-volatile user file system only references
the internal media (Int Media). This means no
externally-attached non-volatile media can be found.

Copu File

Fename File

External Media
File fanager®|

Oelete All Files

" _fore 1 of 2 %

SCPI commands:

: SYSTem FI LEsyst em STORage:

E
Storage TEEB
S [It Ext
Use Current
Goto Fowe Directory As
Default Path
Securitus

by the non-volatile user file system.

> Available only when multiple directories are present
and user is in a sub-directory.

> Available only when a directory is highlighted on the

Delete File or

display.

Hore 2 of 2~

: SYSTem FI LEsyst em STORage: TYPE?

: SYSTem FI LEsyst em STORage:

: SYSTem FI LEsyst em STORage: TYPE: AUTO?

: SYSTem FI LEsyst em STORage: EXTer nal ?

: SYSTem FI LEsyst em STORage:
nmedi a root path">
: SYSTem FI LEsyst em STORage:

: MVEMbry: STORage: BACKup[: ALL]
: MVEMbry: STORage: RESTor e[: ALL]

EXTer nal : PATH?

TYPE | NTer nal | EXTer nal

TYPE: AUTO ON| OFF| 1] 0

EXTer nal : PATH <" ext er nal

"path to directory"
"path to directory"

For details on each key, use the key help (described in User’s Guide). For
additional SCPI command information, refer to the SCPI Command

Reference.

Directory®
[Hore 1 of 2 » External fedia
Oelete All Files
In Currenty
Y Directory

Eackup All User
Files to Currentsf——
Directory

Confirm Delete

Confirm Delete Restore ALL User

Files from M
Current Directory

P,

M\.‘A..

Confirm Restore

Confirm Restore

A

W\

Confirm Backup

Confirm Backup

I atna

Confirm Delete

Confirm Delete

M\.‘A..

60

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using 10 Interfaces
Using USB (Agilent MXG Only)

Verifying USB Functionality

Mini-B Rear Panel Connector

NOTE For information on verifying your Mini-B USB (rear panel) functionality, refer to the Agilent
Connection Expert in the Agilent I0 Libraries Help. The Agilent 10 libraries are included
with your signal generator or Agilent GPIB interface board, or they can be downloaded from
the Agilent website: hitp.//www.agilent.com.

Type-A Front Panel USB Connector
If there is a problem with the external media (flash memory):

1. Verify the USB flash memory’s LED flashes (if applicable) when initially connected to the signal
generator and when a read/write operation is executed.

Verify functionality of flash memory with another piece of USB-compatible equipment or a PC.
Refer to the troubleshooting section of the instruction manual for your USB storage device.

Repeat procedure with different model of flash memory device (For more information, refer to the
Agilent MXG’s Data Sheet.).

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 61

Using 10 Interfaces
Using USB (Agilent MXG Only)

62 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

3 Programming Examples

e “Using the Programming Interface Examples” on page 64
¢ “GPIB Programming Interface Examples” on page 70
¢ “LAN Programming Interface Examples” on page 108

e “RS-232 Programming Interface Examples (ESG/PSG/E8663B Only)” on page 140

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

63

Programming Examples
Using the Programming Interface Examples

Using the Programming Interface Examples

NOTE The USB interface does not require any unique programming instructions unlike the
requirements for the GPIB or RS-232 interfaces.

The programming examples for remote control of the signal generator use the GPIB, LAN, and
RS-232 interfaces and demonstrate instrument control using different 10 libraries and programming
languages. Many of the example programs in this chapter are interactive; the user will be prompted
to perform certain actions or verify signal generator operation or functionality. Example programs are
written in the following languages:

HP Basic C#

C/C++ Microsoft Visual Basic 6.0
Java MATLAB

Perl

These example programs are also available on the signal generator Documentation CD-ROM, enabling
you to cut and paste the examples into a text editor.

NOTE The example programs set the signal generator into remote mode; front panel keys, except
the Agilent MXG Local/Esc/Cancel or the ESG, PSG, and E8663B’s Local key, are disabled.
Press the Agilent MXG Local/Esc/Cancel or the ESG, PSG, and E8663B’s Local key to revert to
manual operation.

To have the signal generator’s front panel update with changes caused by remote operations, enable
the signal generator’s Update in Remote function.

NOTE The Update in Remote function will slow test execution. For faster test execution, disable the
Update in Remote function. (For more information, refer to or “Configuring the Display for
Remote Command Setups (Agilent MXG)” on page 17.) or “Configuring the Display for
Remote Command Setups (ESG/PSG/E8663B)” on page 17.

Programming Examples Development Environment

The C/C++ examples were written using an IBM-compatible personal computer (PC), configured as
follows:

« Pentium® processor (Pentium is a registered trademark of Intel Corporation.)
¢ Windows NT 4.0 operating system

64 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
Using the Programming Interface Examples

C/C++ programming language with the Microsoft Visual C++ 6.0 IDE

National Instruments PCI-GPIB interface card or Agilent GPIB interface card
National Instruments VISA Library or Agilent VISA library

COM1 or COM2 serial port available

LAN interface card

The HP Basic examples were run on a UNIX 700 series workstation.

Running C++ Programs

When using Microsoft Visual C++ 6.0 to run the example programs, include the following files in your
project.

When using the VISA library:

e add the visa32.lib file to the Resource Files
¢ add the visa.h file to the Header Files

When using the NI-488.2 library:

¢ add the GPIB-32.0BJ file to the Resource Files
¢ add the windows.h file to the Header Files
¢ add the Deci-32.h file to the Header Files

For information on the NI-488.2 library and file requirements refer to the National Instrument
website. For information on the VISA library see the Agilent website or National Instrument’s
website.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI- 11 SCPI service. For more information, refer to “Configuring the VXI-11 for LAN
(Agilent MXG)” on page 29 and “Configuring the VXI-11 for LAN (ESG/PSG/E8663B)” on
page 30.

C/C++ Examples

“Interface Check for GPIB Using VISA and C” on page 76

“Queries for RS-232 Using VISA and C” on page 144

“Local Lockout Using NI-488.2 and C++” on page 78

“Queries Using NI-488.2 and Visual C++” on page 81

“Queries for GPIB Using VISA and C” on page 83

“Generating a CW Signal Using VISA and C” on page 85

“Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 87
“Generating an Internal FM Signal Using VISA and C” on page 89

“Generating a Step-Swept Signal Using VISA and C++” on page 91

“Reading the Data Questionable Status Register Using VISA and C” on page 97
“Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 101
“VXI-11 Programming Using SICL and C++” on page 109

“VXI-11 Programming Using VISA and C++” on page 110

“Sockets LAN Programming and C” on page 112

“Interface Check Using VISA and C” on page 141

“Queries for RS-232 Using VISA and C” on page 144

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 65

Programming Examples
Using the Programming Interface Examples

Running C# Examples

To run the example program State_Files.cs on page 344, you must have the .NET framework installed
on your computer. You must also have the Agilent IO Libraries installed on your computer. The .NET
framework can be downloaded from the Microsoft website. For more information on running C#
programs using .NET framework, see Chapter 6.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the VXI-11 for LAN
(Agilent MXG)” on page 29 and “Configuring the VXI-11 for LAN (ESG/PSG/E8663B)” on
page 30.

Running Basic Examples

The BASIC programming interface examples provided in this chapter use either HP Basic or Visual
Basic 6.0 languages.

Visual Basic 6.0 Programming Examples

To run the example programs written in Visual Basic 6.0 you must include references to the 10
Libraries. For more information on VISA and IO libraries, refer to the Agilent VISA User’s Manual,
available on Agilent’'s website: http:/www.agilent.com. In the Visual Basic IDE (Integrated
Development Environment) go to Project-References and place a check mark on the following
references:

¢ Agilent VISA COM Resource Manager 1.0
¢ VISA COM 1.0 Type Library

NOTE If you want to use VISA functions such as viWrite, then you must add the visa32.bas module
to your Visual Basic project.

The signal generator’s VXI-11 SCPI service must be on before you can run the Download Visual Basic
6.0 programming example.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI- 11 SCPI service. For more information, refer to “Configuring the DHCP LAN (Agilent
MXG)” on page 33 and “Configuring the DHCP LAN (ESG/PSG/E8663B)” on page 34.

66 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
Using the Programming Interface Examples

You can start a new Standard EXE project and add the required references. Once the required
references are included, you can copy the example programs into your project and add a command
button to Fornl that will call the program.

The example Visual Basic 6.0 programs are available on the signal generator Documentation CD-ROM,
enabling you to cut and paste the examples into your project.

Visual Basic Examples
The Visual Basic examples enable the use of waveform files and are located in Chapter 5.

¢ “Creating I/Q Data—Little Endian Order” on page 277
¢ “Downloading I/Q Data” on page 280

HP Basic Examples

¢ “Interface Check using HP Basic and GPIB” on page 74

* “Local Lockout Using HP Basic and GPIB” on page 77

¢ “Queries Using HP Basic and GPIB” on page 80

¢ “Queries Using HP Basic and RS-232” on page 143

e “Using 8757D Pass-Thru Commands (PSG with Option 007 Only)” on page 105

Running Java Examples

The Java program “Sockets LAN Programming Using Java” on page 136, connects to the signal
generator via sockets LAN. This program requires Java version 1.1 or later be installed on your PC.
For more information on sockets LAN programming with Java, refer to “Sockets LAN Programming
Using Java” on page 136.

Running MATLAB Examples

For information regarding programming examples and files required to create and play waveform
files, refer to Chapter 5.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the DHCP LAN (Agilent
MXG)” on page 33 and “Configuring the DHCP LAN (ESG/PSG/E8663B)” on page 34.

Running Perl Examples

The Perl example “Sockets LAN Programming Using PERL” on page 138, uses PERL script to control
the signal generator over the sockets LAN interface.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 67

Programming Examples
Using GPIB

Using GPIB

GPIB enables instruments to be connected together and controlled by a computer. GPIB and its
associated interface operations are defined in the ANSI/IEEE Standard 488.1-1987 and ANSI/IEEE
Standard 488.2-1992. See the IEEE website, http://www.ieee.org, for details on these standards.

The following sections contain information for installing a GPIB interface card or NI-GPIB interface
card for your PC or UNIX-based system.

¢ “Installing the GPIB Interface Card” on page 68

For more information on setting up a GPIB interface card or NI-GPIB interface card, refer to:
e “Set Up the GPIB Interface” on page 24

e “Verify GPIB Functionality” on page 25

NOTE You can also connect GPIB instruments to a PC LAN port using the Agilent 82357A
USB/GPIB Interface Converter, which eliminates the need for a GPIB card. For more

information, go to http.//www.agilent.com/find/gpib.

Installing the GPIB Interface Card

A GPIB interface card must be installed in the computer. Two common GPIB interface cards are the
National Instruments (NI) PCI-GPIB card and the Agilent GPIB interface card. Follow the interface
card instructions for installing and configuring the card. The following table provide lists on some of
the available interface cards. Also, see the Agilent website, http://www.agilent.com for details on
GPIB interface cards.

Interface Operating 10 Library Languages Backplane/ Max IO Buffering
Card System BUS (kB/sec)
Agilent GPIB Interface Card for PC-Based Systems
Agilent 82341C Windows?® VISA / SICL | C/C++, Visual ISA/EISA, 750 Built-in
for ISA bus 95/98/NT Basic, Agilent 16 bit
computers ® VEE, HP Basic for
/2000 Windows
Agilent 82341D Windows VISA / SICL | C/C++, Visual ISA/EISA, 750 Built-in
Plug&Play for 95 Basic, Agilent 16 bit
PC VEE, HP Basic for
Windows
Agilent 82350A Windows VISA / SICL | C/C++, Visual PCI 32 bit 750 Built-in
for PCI bus 95/98/NT Basic, Agilent
computers /2000 VEE, HP Basic for
Windows
Agilent 82350B Windows? VISA / SICL | C/C++, Visual PCI 32 bit > 900 Built-in
for PCI bus 98(SE)/ME/2000 Basic, Agilent
computers /XP VEE, HP Basic for
Windows
68 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples

Using GPIB
Interface Operating 10 Library Languages Backplane/ Max IO Buffering
Card System BUS (kB/sec)
NI- GPIB Interface Card for PC-Based Systems
National Windows VISA C/C++, PCI 32 bit 1.5 MBps Built-in
Instruments 95/98/2000/ NI-488.200°¢ Visual BASIC,
PCI-GPIB ME/NT LabView
National Windows VISA C/C++, PCI 32 bit 1.5 MBps Built-in
Instruments NT NI-488.2 Visual BASIC,
PCI-GPIB+ LabView
Agilent- GPIB Interface Card for HP-UX Workstations
Agilent E2071C HP-UX 9.x, VISA/SICL ANSI C, EISA 750 Built-in
HP-UX 10.01 Agilent VEE,
Agilent BASIC,
HP-UX
Agilent E2071D | HP-UX 10.20 VISA/SICL ANSI C, EISA 750 Built-in
Agilent VEE,
Agilent BASIC,
HP-UX
Agilent E2078A | HP-UX 10.20 VISA/SICL ANSI C, PCI 750 Built-in
Agilent VEE,
Agilent BASIC,
HP-UX
a.Windows 95, 98, NT, 2000 and XP are registered trademarks of Microsoft Corporation
b.Windows 98(SE) and ME are registered trademarks of Microsoft Corporation.
¢.NI-488.2 is a trademark of National Instruments Corporation
Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 69

Programming Examples
GPIB Programming Interface Examples

GPIB Programming Interface Examples

“Interface Check using HP Basic and GPIB” on page 74

“Interface Check Using NI-488.2 and C++” on page 75

“Interface Check for GPIB Using VISA and C” on page 76

“Local Lockout Using HP Basic and GPIB” on page 77

“Local Lockout Using NI-488.2 and C++” on page 78

“Queries Using HP Basic and GPIB” on page 80

“Queries Using NI-488.2 and Visual C++” on page 81

“Queries for GPIB Using VISA and C” on page 83

“Generating a CW Signal Using VISA and C” on page 85

“Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 87
“Generating an Internal FM Signal Using VISA and C” on page 89

“Generating a Step-Swept Signal Using VISA and C++” on page 91

“Generating a Swept Signal Using VISA and Visual C++” on page 92

“Saving and Recalling States Using VISA and C” on page 95

“Reading the Data Questionable Status Register Using VISA and C” on page 97
“Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 101
“Using 8757D Pass-Thru Commands (PSG with Option 007 Only)” on page 105

Before Using the GPIB Examples

HP Basic addresses the signal generator at 719. The GPIB card is addressed at 7 and the signal
generator at 19. The GPIB address designator for other libraries is typically GPIBO or GPIBI.

GPIB Function Statements (Command Messages)

Function statements are the basis for GPIB programming and instrument control. These function
statements, combined with SCPI, provide management and data communication for the GPIB interface
and the signal generator.

This section describes functions used by different IO libraries. For more information, refer to the
NI-488.2 Function Reference Manual for Windows, Agilent Standard Instrument Control Library
reference manual, and Microsoft Visual C++ 6.0 documentation.

70

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Abort Function

Programming Examples
GPIB Programming Interface Examples

The HP Basic function ABCRT and the other listed IO library functions terminate listener/talker
activity on the GPIB and prepare the signal generator to receive a new command from the computer.
Typically, this is an initialization command used to place the GPIB in a known starting condition.

Library

Function Statement

Initialization Command

HP Basic

The ABORT function stops all GPIB activity.

10 ABORT 7

VISA Library

In VISA, the viTerminate command requests a VISA session
to terminate normal execution of an asynchronous operation.
The parameter list describes the session and job id.

vi Ter m nat e (parameter list)

executing with the session i d. This function is supported
with C/C++ on Windows 3.1 and Series 700 HP-UX.

NI-488.2 The NI-488.2 library function aborts any asynchronous read, i bstop(int ud)
write, or command operation that is in progress. The
parameter ud is the interface or device descriptor.

SICL The Agilent SICL function aborts any command currently iabort (id)

Remote Function

The HP Basic function REMOTE and the other listed 10 library functions change the signal generator
from local operation to remote operation. In remote operation, the front panel keys are disabled
except for the Local key and the line power switch. Pressing the Local key restores manual operation.

Library

Function Statement

Initialization Command

HP Basic

The REMOTE 719 function disables the front panel operation
of all keys with the exception of the Local key.

10 REMOTE 719

VISA Library

The VISA library, at this time, does not have a similar
command.

N/A

the i d parameter, into remote mode and disables the front
panel keys. Pressing the Local key on the signal generator
front panel restores manual operation. The parameter id is
the session identifier.

NI-488.2 The NI-488.2 library function asserts the Remote Enable Enabl eRenpt e (parameter
(REN) GPIB line. All devices listed in the parameter list are list)
put into a listen-active state although no indication is
generated by the signal generator. The parameter list
describes the interface or device descriptor.
SICL The Agilent SICL function puts an instrument, identified by i remote (id)

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

71

Programming Examples
GPIB Programming Interface Examples

Local Lockout Function

The HP Basic function LOCAL LOCKOUT and the other listed IO library functions disable the front
panel keys including the Local key. With the Local key disabled, only the controller (or a hard reset of
line power) can restore local control.

Library Function Statement Initialization Command

HP Basic The LOCAL LOCKOUT function disables all front- panel signal 10 LOCAL LOCKOUT 719
generator keys. Return to local control can occur only by
cycling power on the instrument, when the LOCAL command
is sent or if the Preset key is pressed.

VISA Library The VISA library, at this time, does not have a similar N/A
command.
NI-488.2 The LOCAL LOCKQOUT function disables all front- panel signal Set RALS (parameter list)

generator keys. Return to local control can occur only by
cycling power on the instrument, when the LOCAL command
is sent or if the Preset key is pressed.

SICL The Agilent SICL igpibllo prevents function prevents user igpibllo (id)
access to front panel keys operation. The function puts an
instrument, identified by the i d parameter, into remote
mode with local lockout. The parameter i d is the session
identifier and instrument address list.

Local Function

The HP Basic function LOCAL and the other listed functions return the signal generator to local
control with a fully enabled front panel.

Library Function Statement Initialization Command

HP Basic The LOCAL 719 function returns the signal generator to 10 LOCAL 719
manual operation, allowing access to the signal generator’s
front panel keys.

VISA Library The VISA library, at this time, does not have a similar N/A
command.
NI-488.2 The NI-488.2 library function places the interface in local ibloc (int ud)

mode and allows operation of the signal generator’s front
panel keys. The ud parameter in the parameter list is the
interface or device descriptor.

SICL The Agilent SICL function puts the signal generator into iloc(id)
Local operation; enabling front panel key operation. The i d
parameter identifies the session.

72 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Clear Function

The HP Basic function CLEAR and the other listed 10 library functions

Programming Examples
GPIB Programming Interface Examples

clear the signal generator.

Library

Function Statement

Initialization Command

HP Basic

The CLEAR 719 function halts all pending output- parameter
operations, resets the parser (interpreter of programming
codes) and prepares for a new programming code, stops any
sweep in progress, and turns off continuous sweep.

10 CLEAR 719

VISA Library

The VISA library uses the viClear function. This function
performs an IEEE 488.1 clear of the signal generator.

vi Cl ear (Vi Sessi on vi)

NI-488.2 The NI-488.2 library function sends the GPIB Selected ibclr(int ud)
Device Clear (SDC) message to the device described by ud.
SICL The Agilent SICL function clears a device or interface. The iclear (id)

function also discards data in both the read and write
formatted IO buffers. The i d parameter identifies the
session.

Output Function

The HP Basic I0 function QUTPUT and the other listed IO library functions put the signal generator
into a listen mode and prepare it to receive ASCII data, typically SCPI commands.

Library

Function Statement

Initialization Command

HP Basic

The function OUTPUT 719 puts the signal generator into
remote mode, makes it a listener, and prepares it to receive
data.

10 QUTPUT 719

VISA Library

The VISA library uses the above function and associated
parameter list to output data. This function formats
according to the format string and sends data to the device.
The parameter list describes the session id and data to send.

viPrintf(parameter list)

NI-488.2 The NI-488.2 library function addresses the GPIB and writes i bwt (parameter |ist)
data to the signal generator. The parameter list includes the
instrument address, session id, and the data to send.

SICL The Agilent SICL function converts data using the format iprintf (paraneter

string. The format string specifies how the argument is
converted before it is output. The function sends the
characters in the format string directly to the instrument.
The parameter list includes the instrument address, data
buffer to write, and so forth.

list)

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

73

Programming Examples
GPIB Programming Interface Examples

Enter Function

The HP Basic function ENTER reads formatted data from the signal generator. Other IO libraries use
similar functions to read data from the signal generator.

Library Function Statement Initialization Command

HP Basic The function ENTER 719 puts the signal generator into 10 ENTER 719;
remote mode, makes it a talker, and assigns data or status
information to a designated variable.

VISA Library The VISA library uses the viScanf function and an viScanf (parameter list)
associated parameter list to receive data. This function
receives data from the instrument, formats it using the
format string, and stores the data in the argument list. The
parameter list includes the session id and string argument.

NI-488.2 The NI-488.2 library function addresses the GPIB, reads ibrd (parameter list)
data bytes from the signal generator, and stores the data
into a specified buffer. The parameter list includes the
instrument address and session id.

SICL The Agilent SICL function reads formatted data, converts it, iscanf (parameter list)
and stores the results into the argument list. The conversion
is done using conversion rules for the format string. The
parameter list includes the instrument address, formatted
data to read, and so forth.

Interface Check using HP Basic and GPIB

This simple program causes the signal generator to perform an instrument reset. The SCPI command
*RST places the signal generator into a pre-defined state and the remote annunciator (R) appears on
the front panel display.

The following program example is available on the signal generator Documentation CD-ROM as
basi cex1. txt.

10 [k kR kR kR R kR kR kR kR kR Rk kR Rk kR kR Rk kR kR kR Rk Rk K Rk
20 !

30 ! PROGRAM NAME: basi cex1l. t xt

40 !

50 ! PROGRAM DESCRI PTION: This programverifies that the GPIB connections and
60 ! interface are functional.

70 !

80 ! Connect a controller to the signal generator using a GPIB cable.

90 !

100 !

110 ! CLEAR and RESET the controller and type in the follow ng conmands and then
120 ! RUN the program

130 !

74 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

140 R R R R R R LR E]

150 !

160 Sig_gen=719
170 LOCAL Sig_gen
180 CLEAR Sig_gen
190 REMOTE 719
200 CLEAR SCREEN
210 REMOTE 719

Decl ares a variable to hold the signal

Pl aces the signal generator i

Clears any pending data |I/O and resets the parser

nto Local node

Puts the signal generator into renpte node

Clears the controllers display

220 QUTPUT Sig_gen;"*RST" !

230 PRI NT "The signal

240 PRINT

gener at or

Pl aces the signal generator
shoul d now be in REMOTE."

250 PRINT "Verify that the rempte [R] annunci ator
260 PRINT "on the front panel

270 PRINT

to return the signal

280 PRINT "Press RUN to start again."
290 END ! Program ends

Interface Check Using NI-488.2 and C++

Programming Examples

GPIB Programming Interface Examples

generator's address

into a defined state

is on. Press the “Local' key,

generator to |ocal

control . "

This example uses the NI-488.2 library to verify that the GPIB connections and interface are
functional. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the signal generator Documentation CD-ROM as

ni ex1. cpp.

[] KRk kkkkkkkkkkkkkkkkkkkkkkkkkkkkk Kk kkkkkkkkkkkkkkkkhkkkhkkkkkkkhkkkkhkkkhkkkkkkkkkkk kK ok

11

/1 PROGRAM NAME: ni ex1.cpp

Il

/1 PROGRAM DESCRI PTION: This programverifies that the GPIB connections and

/1 interface are functional.

I

/1 Connect a GPIB cable fromthe PC GPIB card to the signal generator

/1 Enter the following code into the source .cpp file and execute the program

11

[] KREKkkkkkkkkkkkkkkkkkkkkkkkkkkkkk Kk kkkkkkkkkkkhkkkkhkkkhkkkkkhkhkkkkhkkkhkkkkkkkkkkk kK Kk

#i ncl ude "stdafx. h"

#i nclude <iostrean»
#i ncl ude "wi ndows. h"
#i nclude "Decl -32. h"

usi ng nanespace std;

int GPlBO= 0;

/1 Board handl e

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

75

Programming Examples
GPIB Programming Interface Examples

Addr 4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

{
int sig; /| Declares a device descriptor variable
sig = ibdev(0, 19, 0, 13, 1, 0); // Aquires a device descriptor
ibclr(sig); /1 Sends device clear nessage to signal generator
ibwt(sig, "*RST", 4); /'l Places the signal generator into a defined state

/1 Print data to the output w ndow
cout << "The signal generator should now be in REMOTE. The renote indicator"<<endl;
cout <<"annunci ator R should appear on the signal generator display"<<endl;
return O;
}

Interface Check for GPIB Using VISA and C

This program uses VISA library functions and the C language to communicate with the signal
generator. The program verifies that the GPIB connections and interface are functional. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. vi saex1. cpp performs the following functions:

¢ verifies the GPIB connections and interface are functional
* switches the signal generator into remote operation mode

The following program example is available on the signal generator Documentation CD-ROM as
vi saex1. cpp.

[Rk R kKR KRR KRk K R R KRR KR KKK kR KRR R KR KRR KRR KR K R KRRk R R KK R
/1 PROGRAM NAME: vi saex1. cpp

11

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e program verifies that the GPIB connections and

/1 and interface are functional.

/1 Turn signal generator power off then on and then run the program

11

[RF KKKk ok k ok ok ok k ok ok kk ok ok kkkkkkkkkk ok Kk kkk Kk ok kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkhkkkkhkkkkkk kK ok

#i ncl ude <visa. h>
#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i nclude <stdlib. h>

void main ()

76 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

{
Vi Sessi on defaul tRM vi; /| Declares a variable of type ViSession
/1 for instrument communication

Vi Status vi Status = 0;
/1 Opens a session to the GPIB device
/1 at address 19

vi St at us=vi OpenDef aul t RM &def aul t RM ;

vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);

if(viStatus){

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");
exit(0);}
VviPrintf(vi, "*RST\n"); // initializes signal generator
// prints to the output w ndow
printf("The signal generator should now be in REMOTE. The renote indicator\n");

printf("annunciator R shoul d appear on the signal generator display\n");

printf("\n");

vi G ose(vi); /1 closes session

vi Cl ose(defaul tRV; /'l closes default session
}

Local Lockout Using HP Basic and GPIB

This example demonstrates the Local Lockout function. Local Lockout disables the front panel signal
generator keys. basi cex2. t xt performs the following functions:

* resets instrument
* places signal generator into local
¢ places signal generator into remote

The following program example is available on the signal generator Documentation CD-ROM as
basi cex2. t xt.

10 PR kR kR KRR KRRk KRR KRR KRR KRR K KR KKKk R R KKKk KRR Rk KRR KKKk
20 !

30 ! PROGRAM NAME: basi cex2. t xt

40 !

50 ! PROGRAM DESCRI PTION: I n REMOTE node, access to the signal generators

60 ! functional front panel keys are di sabl ed except for

70 ! the Local and Contrast keys. The LOCAL LOCKOUT

80 ! command wi Il disable the Local key.

90 ! The LOCAL command, executed fromthe controller, is then
100 ! the only way to return the signal generator to front panel,

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 7

Programming Examples
GPIB Programming Interface Examples

110 ! Local, control.

120 I ARk kR Rk Ak kR Rk ok kR Rk kR kR Ak kR Rk kR Rk kKR ARk KRR A Ak
130 Sig_gen=719 ! Declares a variable to hold signal generator address

140 CLEAR Sig_gen ! Resets signal generator parser and clears any output

150 LOCAL Sig_gen ! Places the signal generator in |ocal node

160 REMOTE Si g_gen ! Places the signal generator in renpte node

170 CLEAR SCREEN ! Clears the controllers display

180 QUTPUT Sig_gen;"*RST" ! Places the signal generator in a defined state
190 ! The followi ng print statements are user pronpts

200 PRI NT "The signal generator should now be in renote."
210 PRINT "Verify that the "R and 'L' annunciators are visable"

220 PRINT ".......... Press Conti nue"

230 PAUSE

240 LOCAL LOCKOUT 7 ! Puts the signal generator in LOCAL LOCKOUT node
250 PRI NT ! Prints user pronpt nessages

260 PRI NT "Signal generator should now be in LOCAL LOCKOUT node."

270 PRINT

280 PRINT "Verify that all keys including "“Local' (except Contrast keys) have no effect."
290 PRINT

300 PRINT ".......... Press Conti nue"

310 PAUSE

320 PRINT

330 LOCAL 7 ! Returns signal generator to Local control
340 ! The followi ng print statements are user pronpts

350 PRI NT "Signal generator should now be in Local node."

360 PRINT

370 PRINT "Verify that the signal generator's front-panel keyboard is functional."
380 PRINT

390 PRINT "To re-start this program press RUN."

400 END

Local Lockout Using NI-488.2 and C++

This example uses the NI-488.2 library to set the signal generator local lockout mode. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. ni ex2. cpp performs the following functions:

¢ all front panel keys, except the contrast key

¢ places the signal generator into remote

¢ prompts the user to verify the signal generator is in remote
* places the signal generator into local

The following program example is available on the signal generator Documentation CD-ROM as
ni ex2. cpp.

[] KA KRk KAk KKK KKK A K KKK KKK KA K KKK R KKK KA KKK KA KR KKK KA KKK AR KKK KKK A KA KKK A AR KK R Kk h KK

78 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

/| PROGRAM NAME: ni ex2.cpp
11

/1 PROGRAM DESCRI PTI ON: This programwi || place the signal generator into
// LOCAL LOCKOUT node. All front panel keys, except the Contrast
/'l The | ocal command, 'ibloc(sig)' executed via programcode, is the only way to

Il return the signal generator to front panel, Local, control.

[] KA KAk KA kKKK KK KA KK KKK Ak A A K KKK R KKK KA KKK KA KKK IR A KA KKK AR KKK KKK A KA K KA KA AR A K R Kk kKK

#i ncl ude "stdafx. h"

#i ncl ude <i ostrean»
#i ncl ude "w ndows. h"
#i ncl ude "Decl -32. h"

usi ng namespace std;

Programming Examples
GPIB Programming Interface Examples

int GPIBO= O0; /1 Board handl e

Addr 4882_t Address[31]; /| Declares a variable of type Addr4882_t

int main()

{
int sig; /|l Declares variable to hold interface descriptor
sig = ibdev(0, 19, 0, 13, 1, 0); /1 Opens and initialize a device descriptor
ibclr(sig); /1 Sends GPIB Sel ected Device Clear (SDC) nessage
ibwt(sig, "*RST", 4); /1 Places signal generator in a defined state
cout << "The signal generator should now be in REMOTE. The renpte node R "<<endl;
cout <<"annunci ator should appear on the signal generator display."<<endl;
cout <<"Press Enter to continue"<<endl;
cin.ignore(10000,'\n");
Sendl FC(GPI BO) ; /1l Resets the GPIB interface
Addr ess[0] =19; /1 Signal generator's address
Addr ess[1] =NOADDR; /1l Signifies end elenent in array. Defined in

/1 DECL-32.H
Set RWLS(GPI BO, Address); /1l Places device in Renpte with Lockout State.
cout<< "The signal generator should now be in LOCAL LOCKOQUT. Verify that all
keys" <<endl ;
cout<< "including the 'Local' key are disabled (Contrast keys are not
af f ect ed) " <<endl ;

cout <<"Press Enter to continue"<<endl;
cin.ignore(10000,'\n");
ibloc(sig); /1 Returns signal generator to local control
cout <<end| ;
cout <<"The signal generator should now be in |ocal node\n";

return 0;}

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 79

Programming Examples
GPIB Programming Interface Examples

Queries Using HP Basic and GPIB

This example demonstrates signal generator query commands. The signal generator can be queried for
conditions and setup parameters. Query commands are identified by the question mark as in the
identify command *| DN? basi cex3.txt perforns the follow ng functions:

clears the signal generator

queries the signal generator’s settings

The following program example is available on the signal generator Documentation CD-ROM as
basi cex3. txt.

10 R R KRR R R KRR KR KRR R R KRR R R KRRk R KKk KR KRR KR KRR K R K KKK K
20 !

30 ! PROGRAM NAME: basi cex3. t xt

40 !

50 ! PROGRAM DESCRI PTION: In this exanple, query comands are used with response
60 ! data formats.

70 !

80 ! CLEAR and RESET the controller and RUN the foll owing program

90 !

D00 I RR AR KRRk kR R KKk kR KRRk kKRR KRRk K KRR K KRR KR K R R KR K R R KKK K R Kk
110 !

120 DI M A$[10], C$[100] , D$[10] ! Declares variables to hold string response data
130 | NTEGER B | Declares variable to hold integer response data
140 Si g_gen=719 | Declares variable to hold signal generator address
150 LOCAL Sig_gen ! Puts signal generator in Local node

160 CLEAR Si g_gen | Resets parser and clears any pendi ng out put

170 CLEAR SCREEN | Cears the controller’s display

180 QUTPUT Si g_gen; "*RST" ! Puts signal generator into a defined state

190 QUTPUT Si g_gen; " FREQ CW?" I Querys the signal generator CWfrequency setting
200 ENTER Si g_gen; F ! Enter the CWfrequency setting

210 ! Print frequency setting to the controller display

220 PRI NT "Present source CWfrequency is: ";F/ 1. E+6;" MHz"

230 PRI NT

240 QUTPUT Si g_gen; "PON AMPL?" | Querys the signal generator power |evel

250 ENTER Si g_gen; W ! Enter the power |evel

260 ! Print power level to the controller display

270 PRI NT "Current power setting is: ";W"dBM

280 PRI NT

290 QUTPUT Si g_gen; "FREQ MODE?" | Querys the signal generator for frequency node
300 ENTER Si g_gen; A$! Enter in the node: CW Fixed or List

310 ! Print frequency node to the controller display

320 PRI NT "Source's frequency node is: ";A$

330 PRI NT

80 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

340 QUTPUT Sig_gen;"QUTP OFF" ! Turns signal generator RF state off

350 QUTPUT Sig_gen; " QUTP?" ! Querys the operating state of the signal generator
360 ENTER Si g_gen; B ! Enter in the state (0 for off)

370 ! Print the on/off state of the signal generator to the controller display
380 | F B>0 THEN

390 PRI NT "Signal Generator output is: on"

400 ELSE

410 PRI NT "Signal Generator output is: off"

420 END IF

430 QUTPUT Sig_gen; "*| DN?" ! Querys for signal generator ID

440 ENTER Si g_gen; C$! Enter in the signal generator ID

450 ! Print the signal generator IDto the controller display

460 PRINT

470 PRI NT "This signal generator is a ";C$

480 PRINT

490 ! The next command is a query for the signal generator's GPIB address
500 QUTPUT Sig_gen; " SYST: COMWM GPI B: ADDR?"

510 ENTER Si g_gen; D$! Enter in the signal generator's address
520 ! Print the signal generator's GPIB address to the controllers display
530 PRINT "The GPIB address is ";D$

540 PRINT

550 ! Print user pronpts to the controller's display

560 PRI NT "The signal generator is now under |ocal control”
570 PRINT "or Press RUN to start again."
580 END

Queries Using NI-488.2 and Visual C++

This example uses the NI-488.2 library to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. ni ex3. cpp performs the following functions:

* resets the signal generator
¢ queries the signal generator for various settings
¢ reads the various settings

The following program example is available on the signal generator Documentation CD-ROM as
ni ex3. cpp.

[R R Rk KRk R KRRk K R R KR K R R KRk R KR KRk R R KKk K R KK R R KK R R KKK
/1 PROGRAM NAME: ni ex3. cpp

11

/1 PROGRAM DESCRI PTI ON: This exanpl e denponstrates the use of query conmands.

11

/1 The signal generator can be queried for conditions and instrunment states.

/1 These commands are of the type "*IDN?" where the question mark indicates

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 81

Programming Examples
GPIB Programming Interface Examples

/1 a query.
11

[FF AR Rk K kK kK KKK KK KKK KK A A KKK IR A KA KKK KR KKK KK IR A K KKK AR KR KKK KA A KA KKK A AR A K Rk kKK

#i ncl ude "stdafx. h"

#i ncl ude <i ostreanp
#i ncl ude "w ndows. h"
#i ncl ude "Decl -32. h"

usi ng namespace std;

int GPIBO= O; /1 Board handl e
Addr 4882_t Address[31]; /1 Declare a variable of type Addr4882_t
int main()
{
int sig; /| Declares variable to hold interface descriptor
int num
char rdval [100]; /| Declares variable to read instrument responses
sig = ibdev(0, 19, 0, 13, 1, 0); // Open and initialize a device descriptor
i bloc(sig); /'l Places the signal generator in |ocal node
ibclr(sig); /1 Sends Sel ected Device C ear(SDC) nessage
ibwt(sig, "*RST", 4); /'l Places signal generator in a defined state
ibwt(sig, ":FREQency: CW",614); // Querys the CWfrequency
ibrd(sig, rdval, 100); /1 Reads in the response into rdVal
rdVval [ibcntl] = "'\0"; /1 Nul'l character indicating end of array
cout <<"Source CW frequency is "<<rdVval; /1 Print frequency of signal generator

cout <<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");

ibwt(sig, "POWNAWL?",10); /1 Querys the signal generator
ibrd(sig, rdval, 100); /1 Reads the signal generator power |evel
rdVal [ibcntl] = "'\0"; /1 Null character indicating end of array

/1l Prints signal generator power |evel
cout <<"Source power (dBm) is : "<<rdVal;
cout <<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");

ibwt(sig, ":FREQ MODE?", 11); /1 Querys source frequency node
ibrd(sig, rdval, 100); /1l Enters in the source frequency node
rdVal [ibcntl] = '\0"; /1 Nul'l character indicating end of array

cout <<"Source frequency node is "<<rdVal; // Print source frequency node
cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n");

ibwt(sig, "OUTP OFF",12); /1 Turns off RF source

82 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

ibwt(sig, "OUTP?",5); /'l Querys the on/off state of the instrunent
ibrd(sig, rdval,2); /1 Enter in the source state
rdVal [ibcntl] = "'\0";
num = (int (rdval[0]) -('0"));
if (num> 0){
cout<<"Source RF state is : On"<<endl;

tel se{
cout<<"Source RF state is : Of"<<endl;}
cout <<endl ;
ibwt(sig, "*IDN?",5); /1 Querys the instrunent ID
ibrd(sig, rdval, 100); /'l Reads the source ID
rdVal [ibcntl] = "'\0"; /1 Null character indicating end of array
cout<<"Source IDis : "<<rdval; // Prints the source |ID

cout <<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");
ibwt(sig, "SYST: COW GPIB: ADDR?", 20); //Querys source address

ibrd(sig, rdval, 100); /| Reads the source address
rdVal [ibcntl] = "'\0"; /1 Nul'l character indicates end of array
/1 Prints the signal generator address
cout<<"Source GPIB address is : "<<rdVval;
cout <<endl ;
cout<<"Press the 'Local' key to return the signal generator to LOCAL control "<<endl; cout <<end| ;
return O;

}
Queries for GPIB Using VISA and C

This example uses VISA library functions to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. vi saex3. cpp performs the following functions:

¢ verifies the GPIB connections and interface are functional

* resets the signal generator

¢ queries the instrument (CW frequency, power level, frequency mode, and RF state)
* reads responses into the rdBuffer (CW frequency, power level, and frequency mode)
* turns signal generator RF state off

¢ verifies RF state off

The following program example is available on the signal generator Documentation CD-ROM as
vi saex3. cpp.

[Rk R kKR R R R KRk kKR KK KR KKK kR KRR KR KRR KRR KR K R R KRk R R KK R
/1 PROGRAM FI LE NAME: vi saex3. cpp

11

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denpnstrates the use of query commands. The signal

/1 generator can be queried for conditions and instrument states. These commands are of

/1 the type "*IDN?"; the question mark indicates a query.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 83

Programming Examples
GPIB Programming Interface Examples

Il

[RF KA K Kk kA kK KK Rk KA K KKK KKk A A K KK R KKK KA KKK A IR K IR A KA KKK KA KA KKK IR A KA KKK KA KR A KKK IR AKX Kk

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostrean»
#i ncl ude <coni o. h>
#i nclude <stdlib. h>

usi ng namespace std;

void main ()

{

Vi Session defaul tRM vi; /'l Declares variables of type ViSession
/1 for instrument communication

Vi Status vi Status = 0; /'l Declares a variable of type ViStatus
/1l for GPIB verifications

char rdBuffer [256]; /'l Declares variable to hold string data

int num /| Declares variable to hold integer data

I/ Initialize the VISA system
vi St at us=vi OpenDef aul t RM &def aul t RM ;
/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 |f problens, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");

printf("\n");

exit(0);}
VviPrintf(vi, "*RST\n"); /'l Resets signal generator
viPrintf(vi, "FREQ CWP\n"); /'l Querys the CWfrequency
vi Scanf (vi, "%", rdBuffer); /| Reads response into rdBuffer

/'l Prints the source frequency
printf("Source CWfrequency is : %\n", rdBuffer);
printf("Press any key to continue\n");

printf("\n"); /1 Prints new |line character to the display
getch();

viPrintf(vi, "POWNAMPL?\N"); /'l Querys the power |evel

vi Scanf (vi, "%", rdBuffer); /! Reads the response into rdBuffer

/1 Prints the source power |evel
printf("Source power (dBm) is : %\n", rdBuffer);
printf("Press any key to continue\n");
printf("\n"); /1 Prints new |line character to the display

84 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

getch();

viPrintf(vi, "FREQ MODE?\n");

vi Scanf (vi, "%", rdBuffer);

Programming Examples

GPIB Programming Interface Examples

/1 Querys the frequency node
/'l Reads the response into rdBuffer
/'l Prints the source freq node

printf("Source frequency node is : %\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n");

getch();

VviPrintf(vi, "OUTP OFF\n");
Vi Printf(vi, "OUTP?\n");

vi Scanf (vi, "%i", &wum;

if (num>0) {
printf("Source RF state is :
tel se{

printf("Source RF state is :

}

vi Cl ose(vi);
vi Cl ose(defaul tRM;
}

/1 Prints new line character to the display
/1 Turns source RF state off
/1 Querys the signal generator's RF state
/1 Reads the response (integer val ue)
/1l Prints the on/off RF state

on\n");

off\n");

/'l Close the sessions

Generating a CW Signal Using VISA and C

This example uses VISA library functions to control the signal generator. The signal generator is set
for a CW frequency of 500 kHz and a power level of —2.3 dBm. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.
vi saex4. cpp performs the following functions:

¢ verifies the GPIB connections and interface are functional
* resets the signal generator

* queries the instrument (CW frequency, power level, frequency mode, and RF state)
* reads responses into the rdBuffer (CW frequency, power level, and frequency mode)
¢ turns signal generator RF state off

* verifies RF state off

The following program example is available on the signal generator Documentation CD-ROM as

vi saex4. cpp.

[FF KRR Kk kA kK kK Kk K KKK KKK Kk A A K A KK R A KA KA KKK A A KR K IR A KA KKK KA KA KKK IR AKX KKK KA A AR A KKK IR KK A Kk

/1 PROGRAM FI LE NAME: vi saex4. cpp

11

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denpnstrates query commands.

/'l frequency and power |evel

/1 The RF state of the signal
/'l response will indicate that the RF state is on.
/'l queried. The response should indicate that the RF state is off.

generator is turn on and then the state is queried. The

The si gnal

gener at or

The RF state is then turned off and
The query results are

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

85

Programming Examples
GPIB Programming Interface Examples

I/ printed to the to the display w ndow
11

[FF KRR Kk kA kK KK R kKA KK KKK Kk A A K KKK R KKK KA KKK KA KKK IR KKK KKK K A KKK IR A KA KKK KA AR A KR K IR KK A Kk

#i ncl ude " St dAf x. h"
#i ncl ude <visa. h>
#i ncl ude <i ostreanp
#i nclude <stdlib. h>
#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM vi; /1 Declares variables of type Vi Session
/1 for instrument communication

Vi Status vi Status = 0; Il Declares a variable of type ViStatus
/1l for GPIB verifications

char rdBuffer [256]; /'l Declare variable to hold string data

int num /'l Declare variable to hold integer data

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA system

/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::1NSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 |f problenms then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");

printf("\n");

exit(0);}

VviPrintf(vi, "*RST\n"); /'l Reset the signal generator

viPrintf(vi, "FREQ 500 kHz\n"); // Set the source CWfrequency for 500 kHz
VviPrintf(vi, "FREQ CWP\n"); /'l Query the CWfrequency

vi Scanf (vi, "%", rdBuffer); /'l Read signal generator response

printf("Source CWfrequency is : %\n", rdBuffer); // Print the frequency
viPrintf(vi, "PONAWL -2.3 dBmn"); // Set the power level to -2.3 dBm
VviPrintf(vi, "POWNAMPL?\N"); Il Query the power |evel
vi Scanf (vi, "%", rdBuffer); /'l Read the response into rdBuffer
printf("Source power (dBm) is : %\n", rdBuffer); // Print the power |evel
viPrintf(vi, "OUTP: STAT O\\n"); // Turn source RF state on
ViPrintf(vi, "OUTP?\n"); /1 Query the signal generator's RF state
vi Scanf (vi, "%i", &wum; /1 Read the response (integer value)

Il Print the on/off RF state
if (num>0) {

86 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf("Source RF state is : on\n");
tel se{
printf("Source RF state is : off\n");
}
printf("\n");
printf("Verify RF state then press continue\n");
printf("\n");
getch();
viCear(vi);
Vi Printf(vi,"OQUTP: STAT OFF\n"); // Turn source RF state off
Vi Printf(vi, "OUTP?\n"); /1 Query the signal generator's RF state
vi Scanf (vi, "%i", &wum; /! Read the response

/1 Print the on/off RF state

if (num>0) {
printf("Source RF state is now. on\n");
tel se{
printf("Source RF state is now off\n");
}

/1 Close the sessions

printf("\n");
viCear(vi);
vi C ose(vi);
vi Cl ose(defaul tRM;
}

Generating an Externally Applied AC-Coupled FM Signal Using VISA and C

In this example, the VISA library is used to generate an ac-coupled FM signal at a carrier frequency
of 700 MHz, a power level of —2.5 dBm, and a deviation of 20 kHz. Before running the program:

¢ Connect the output of a modulating signal source to the signal generator’s EXT 2 input connector.
* Set the modulation signal source for the desired FM characteristics.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.
vi saex5. cpp performs the following functions:

¢ error checking

* resets the signal generator

¢ sets up the EXT 2 connector on the signal generator for FM
* sets up FM path 2 coupling to AC

¢ sets up FM path 2 deviation to 20 kHz

e sets carrier frequency to 700 MHz

¢ sets the power level to -2.5 dBm

¢ turns on frequency modulation and RF output

The following program example is available on the signal generator Documentation CD-ROM as
vi saex5. cpp.

[KKKk k ok ok ok k ok ok kk ok ok kkkkkkkkkk ok kkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkhkkkhkkkkhkkkkkk kK Kk

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 87

Programming Examples
GPIB Programming Interface Examples

/1 PROGRAM FI LE NAME: vi saex5. cpp
11

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e sets the signal generator FM source to External
/1 coupling to AC, deviation to 20 kHZ, carrier frequency to 700 MHz and the power |evel

// to -2.5 dBm The RF state is set to on.
11

[RF KRR Kk kK kK KK Rk KA KK KKK Kk A A K A KK R KKK KA KKK A KR K IR KKK KKK A KKK IR KKK KKK A AR A KKK I kKA Kk

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostrean»
#include <stdlib. h>
#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM vi; /'l Declares variables of type Vi Session
/1 for instrunent communication

Vi Status vi Status = 0; /| Declares a variable of type ViStatus

/1 for GPIB verifications
/1 Initialize VISA session
vi St at us=vi OpenDef aul t RM &def aul t RM ;
/| open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 1f problenms, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

printf("Exanple programto set up the signal generator\n");
printf("for an AC-coupled FM signal\n");
printf("Press any key to continue\n");

printf("\n");

getch();

printf("\n");

VviPrintf(vi, "*RST\n"); /1 Resets the signal generator
VviPrintf(vi, "FM SOUR EXT2\n"); /'l Sets EXT 2 source for FM
viPrintf(vi, "FM EXT2: COUP AC\n"); /1l Sets FM path 2 coupling to AC
viPrintf(vi, "FMDEV 20 kHz\n"); /1l Sets FM path 2 deviation to 20 kHz
VviPrintf(vi, "FREQ 700 MHz\n"); /1l Sets carrier frequency to 700 Mz

2,

88 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

viPrintf(vi, "PONAWPL -2.5 dBmn"); // Sets the power level to -2.5 dBm
viPrintf(vi, "FM STAT O\\n"); /1 Turns on frequency nodul ation
Vi Printf(vi, "OUTP: STAT O\\n"); /1 Turns on RF out put
/1 Print user infornation
printf("Power level : -2.5 dBmn")
printf("FMstate : on\n");
printf("RF output : on\n");
printf("Carrier Frequency : 700 MHZ\n")
printf("Deviation : 20 kHzZ\n");
printf("EXT2 and AC coupling are selected\n")
printf("\n"); /1l Prints a carrage return
/1 Close the sessions
vi C ose(vi);
vi Cl ose(defaul tRV;
}

Generating an Internal FM Signal Using VISA and C

In this example the VISA library is used to generate an internal FM signal at a carrier frequency of
900 MHz and a power level of —15 dBm. The FM rate will be 5 kHz and the peak deviation will be
100 kHz. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file. vi saex6. cpp performs the following functions:

¢ error checking

* resets the signal generator

¢ sets up the signal generator for FM path 2 and internal FM rate of 5 kHz
e sets up FM path 2 deviation to 100 kHz

¢ sets carrier frequency to 900 MHz

¢ sets the power level to -15 dBm

e turns on frequency modulation and RF output

The following program example is available on the signal generator Documentation CD-ROM as
vi saex6. cpp.

[Rk R kKR R R R KKk kR R KRR R R KKK kR KRRk KR KRR KRR KR K R R KRk R R KKk R
/1 PROGRAM FI LE NAME: vi saex6. cpp

11

/1 PROGRAM DESCRI PI ON: Thi s exanpl e generates an internal FMsignal at a 900

Il MHz carrier frequency and a power |evel of -15 dBm The FMrate is 5 kHz and the peak
/'l deviation 100 kHz

11

[] KKKk k ok ok ok k ok ok kkk ok kkkkkkkkkk ok kkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkhkkkhkkkkkkkkkkk kK Kk

#i ncl ude <vi sa. h>

#i ncl ude " St dAf x. h"
#i nclude <iostrean»
#i nclude <stdlib. h>

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 89

Programming Examples
GPIB Programming Interface Examples

#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM vi; /| Decl ares variabl es of type Vi Session
/1 for instrunent communication

Vi Status vi Status = 0; /1 Declares a variable of type ViStatus

/1 for GPIB verifications

vi St at us=vi OpenDef aul t RM &lefaul tRM; // Initialize VISA session

/1 open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 1f problems, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

printf("Exanple programto set up the signal generator\n");
printf("for an AC-coupled FM signal\n");

printf("\n");
printf("Press any key to continue\n");
getch();
viCear(vi); /'l Cears the signal generator
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
VviPrintf(vi, "FM2:INT: FREQ 5 kHz\n"); // Sets FMpath 2 to internal at a nodulation rate of 5 kHz
viPrintf(vi, "FM2:DEV 100 kHz\n"); /'l Sets FM path 2 nodul ation deviation rate of 100 kHz
VviPrintf(vi, "FREQ 900 MHz\n"); /'l Sets carrier frequency to 900 MHz
viPrintf(vi, "POW-15 dBmn"); /'l Sets the power |evel to -15 dBm
viPrintf(vi, "FM2:STAT ON\\n"); /1 Turns on frequency nodul ation
Vi Printf(vi, "OUTP: STAT O\\n"); /1 Turns on RF out put
printf("\n"); /'l Prints a carriage return
/1 Print user infornation
printf("Power level : -15 dBmn");

printf("FMstate : on\n");

printf("RF output : on\n");

printf("Carrier Frequency : 900 MHZ\n");

printf("Deviation : 100 kHZ\n");

printf("Internal nodulation : 5 kHz\n");

printf("\n"); /1l Print a carrage return

/1 O ose the sessions

vi G ose(vi);

90 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

vi Cl ose(defaul tRM ;
}

Generating a Step-Swept Signal Using VISA and C++

In this example the VISA library is used to set the signal generator for a continuous step sweep on
a defined set of points from 500 MHz to 800 MHz. The number of steps is set for 10 and the dwell
time at each step is set to 500 ms. The signal generator will then be set to local mode which allows
the user to make adjustments from the front panel. Launch Microsoft Visual C++ 6.0, add the required
files, and enter the following code into your .cpp source file. vi saex7. cpp performs the following
functions:

¢ clears and resets the signal generator

e sets up the instrument for continuous step sweep
¢ sets up the start and stop sweep frequencies

¢ sets up the number of steps

e sets the power level

¢ turns on the RF output

The following program example is available on the signal generator Documentation CD-ROM as
vi saex7. cpp.

//**
/1 PROGRAM FI LE NAME: vi saex7. cpp

11

/1 PROGRAM DESCRI PTI ON: This exanple will programthe signal generator to performa step

/1 sweep from 500-800 MHz with a .5 sec dwell at each frequency step.

I

[KKKk kk ok ok k ok ok ok k kK kkkkkkk kK k kK kk kK k ok kkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkhkkkhkkkkkkkkkkk kK ok

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostrean»

void main ()

{

Vi Session defaul tRM vi;// Declares variables of type ViSession

/1 vi establishes instrument communication

Vi Status viStatus = 0;// Declares a variable of type Vi Status
/1 for GPIB verifications

vi St at us=vi OpenDef aul t RM &lefaul tRM; // Initialize VISA session
/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI _NULL, &vi);
if(viStatus){// If problens, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instrunents and connections\n");

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 91

Programming Examples
GPIB Programming Interface Examples

printf("\n");

exit(0);}

viCear(vi); /1 Cears the signal generator
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
ViPrintf(vi, "*CLS\n"); Il Cears the status byte register
viPrintf(vi, "FREQ MODE LI ST\n"); /'l Sets the sig gen freq node to |ist
Vi Printf(vi, "LIST: TYPE STEP\n"); I/ Sets sig gen LIST type to step

viPrintf(vi, "FREQ STAR 500 MHz\n"); // Sets start frequency
viPrintf(vi, "FREQ STOP 800 MHz\n"); // Sets stop frequency

VviPrintf(vi, "SWE:PON 10\n"); /1 Sets nunber of steps (30 nHz/step)
VviPrintf(vi, "SWEDWEL .5 S\n"); Il Sets dwell tinme to 500 ns/step
VviPrintf(vi, "PONAWMPL -5 dBmn"); /'l Sets the power |evel for -5 dBm
Vi Printf(vi, "OUTP: STAT O\\n"); /1 Turns RF output on
ViPrintf(vi, "INIT: CONT O\ n"); /1 Begins the step sweep operation
/1 Print user information
printf("The signal generator is in step sweep node. The frequency range is\n");
printf("500 to 800 nmHz. There is a .5 sec dwell tine at each 30 nHz step.\n");
printf("\n"); /'l Prints a carriage return/line feed
vi Printf(vi, "OUTP: STAT OFF\n"); /1 Turns the RF output off

printf("Press the front panel Local key to return the\n");
printf("signal generator to manual operation.\n");

/1 Closes the sessions
printf("\n");
vi C ose(vi);
vi Cl ose(defaul tRV;
}

Generating a Swept Signal Using VISA and Visual C++

This example sets up the signal generator for a frequency sweep from 1 to 2 GHz with 101 points
and a .01 second dwell period for each point. A loop is used to generator 5 sweep operations. The
signal generator triggers each sweep with the : | N T command. There is a wait introduced in the loop
to allow the signal generator to complete all operations such as set up and retrace before the next
sweep is generated. vi saex1l. cpp performs the following functions:

¢ sets up the signal generator for a 1 to 2 GHz frequency sweep
e sets up the signal generator to have a dwell time of .01 seconds and 101 points in the sweep
¢ sleep function is used to allow the instrument to complete its sweep operation

92 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples

GPIB Programming Interface Examples

The following program example is available on the signal generator Documentation CD-ROM as
vi saex11. cpp.

INEASEASA AR AR RS RS S RS eRs Rt

11
11
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
11

PROGRAM FI LE NAME: vi saex11. cpp

PROGRAM DESCRI PTI ON: This program sets up the signal generator to
sweep from1-2 GHz. A loop and counter are used to generate 5 sweeps.

Each sweep consists of 101 points with a .01 second dwell at each point.

The programuses a Sleep function to allow the signal generator to
conplete it's sweep operation before the INIT command is sent.
The Sleep function is available with the wi ndows.h header file which is

included in the project.

NOTE: Change the TCPI PO address in the instOpenString declaration to
mat ch the | P address of your signal generator.

[FF R K Rk kR kK KK KK KA K KKK KA KKK KKK KKK KK IR KKK KKK KA A KKK IR IR A KKK Ak h Kk ok *

#i nclude "stdafx. h"

#i nclude "visa.h"

#i nclude <iostrean

#i ncl ude <wi ndows. h>

void main ()

{

Vi Status stat;
Vi Sessi on defaul tRMinst;

int npoints = 101;
doubl e dwell = 0.01;
i nt intCounter=5;

char* instQpenString = "TCPI PO: : 141. 121. 93. 101: : I NSTR';

stat = vi OpenDef aul t RM &def aul t RM ;
stat = vi Open(defaul t RMinstQpenString, VI _NULL, VI _NULL, &inst);

I/ preset to start clean

stat = viPrintf(inst, "*RST\n");
I/ set power |evel for -10dBm
stat = viPrintf(inst, "POW-10DBMn");

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

93

Programming Examples
GPIB Programming Interface Examples

I/ set the start and stop frequency for the sweep
stat = viPrintf(inst, "FREQ START 1GHZ\n");

stat = viPrintf(inst, "FREQ STOP 2GHZ\n");

I/ setup dwell per point

stat = viPrintf(inst, "SWEEP: DNELL %\ n", dwell);

/| setup nunber of points

stat = viPrintf(inst, "SWEEP: PO NTS %\ n", npoints);

I/ set interface tinmeout to double the expected sweep tine
/1 sweep takes (~15ms + dwell) per point * nunber of points
/1 the timeout should not be shorter then the sweep, set it
/'l 1onger

long tinmeout Ms = | ong(2*npoi nts*(.015+dwel |)*1000);

/1l set the VISA tinmeout

stat = viSetAttribute(inst, VI_ATTR TMO VALUE, tineoutMs);

I/ set continuous trigger node off

stat = viPrintf(inst, "INIT: CONT OFF\n");
/'l turn |list sweep on

stat = viPrintf(inst, "FREQ MODE LIST\n");

int sweepNo = O;
whi | e(i nt Counter>0)

{
I/ start the sweep (initialize)
stat = viPrintf(inst, "INNT\n");
printf("Sweep %l started\n", ++sweepNo) ;
/'l wait for the sweep conpletion with *OPC?
int res ;
stat = viPrintf(inst, "*OPC?\n");
stat = vi Scanf (inst, "%l", &res);
/1 handl e possible errors here (npst likely a tineout)
/1 err_handler(inst, stat);
put s(" Sweep ended");
/1 delay before sending next INIT since instrunent
/1 may not be ready to receive it yet
Sl eep(15);

i nt Counter = intCounter-1;
}

printf("End of Programin\n");

94 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

}
Saving and Recalling States Using VISA and C

In this example, instrument settings are saved in the signal generator’s save register. These settings
can then be recalled separately; either from the keyboard or from the signal generator’s front panel.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file. vi saex8. cpp performs the following functions:

¢ error checking

¢ clears the signal generator

* resets the status byte register

* resets the signal generator

¢ sets up the signal generator frequency, ALC off, power level, RF output on

¢ checks for operation complete

e saves to settings to instrument register number one

¢ recalls information from register number one

e prompts user input to put instrument into Local and checks for operation complete

The following program example is available on the signal generator Documentation CD-ROM as
vi saex8. cpp.

//**
/1 PROGRAM FI LE NAME: vi saex8. cpp

11

/1 PROGRAM DESCRI PTION: In this exanple, instrunent settings are saved in the signal

/1 generator's registers and then recalled

/1 Instrument settings can be recalled fromthe keyboard or, when the signal generator
// is put into Local control, fromthe front panel

/1 This programwill initialize the signal generator for an instrunent state, store the
|/ state to register #1. An *RST command will reset the signal generator and a *RCL

/1 command will return it to the stored state. Followi ng this renote operation the user
/1 will be instructed to place the signal generator in Local node

11

[R KRR Kk kK kK KK R kKA KK KKK Kk A A K A KK KKK KA KKK A KKK IR KKK KKK KA KKK IR A KA KKK KA KA KKK IR AKX Kk

#i ncl ude <visa. h>

#i ncl ude " St dAf x. h"
#i ncl ude <i ostrean»
#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM vi;// Declares variables of type Vi Session
/1 for instrument conmunication

Vi Status viStatus = 0;// Declares a variable of type ViStatus

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 95

Programming Examples
GPIB Programming Interface Examples

/1l for GPIB verifications
I ong I ngDone = 0; /1 Operation conplete flag

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA session
/1 Open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){// |f problenms, then pronpt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}
printf("\n");
viCear(vi); /'l Cears the signal generator
ViPrintf(vi, "*CLS\n"); /'l Resets the status byte register

/1 Print user information
printf("Programm ng exanpl e using the *SAV,*RCL SCPI commands\n");
printf("used to save and recall an instrunent's state\n");

printf("\n");
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
viPrintf(vi, "FREQ 5 MHz\n"); /'l Sets sig gen frequency
ViPrintf(vi, "POWNWALC OFF\n"); /'l Turns ALC O f
ViPrintf(vi, "PONAWPL -3.2 dBmn"); // Sets power for -3.2 dBm
Vi Printf(vi, "OUTP: STAT O\\n"); /1 Turns RF output On
ViPrintf(vi, "*OPC\n"); /| Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"% ", & ngDone); /1 Waits for setup to conplete
VviPrintf(vi, "*SAV 1\n"); /| Saves sig gen state to register #1

/1 Print user information
printf("The current signal generator operating state will be saved\n");
printf("to Register #1. Cbserve the state then press Enter\n");

printf("\n"); /'l Prints new |ine character
getch(); /1 Wait for user input
| ngDone=0; /'l Resets the operation conplete flag
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
ViPrintf(vi, "*OPC\n"); /| Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"% ", & ngDone); /1 Waits for setup to conplete

/1 Print user infromation

printf("The instrunent is nowin it's Reset operating state. Press the\n");

printf("Enter key to return the signal generator to the Register #1 state\n");
printf("\n"); /1 Prints new |ine character
getch(); /1 Waits for user input

96 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

| ngDone=0; /'l Reset the operation conplete flag
VviPrintf(vi, "*RCL 1\n"); /'l Recalls stored register #1 state
ViPrintf(vi, "*OPC\n"); /| Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"% ", & ngDone); /1 Waits for setup to conplete

/1 Print user information
printf("The signal generator has been returned to it's Register #1 state\n");

printf("Press Enter to continue\n");

printf("\n"); /1 Prints new |ine character
getch(); /1 Waits for user input
| ngDone=0; /| Reset the operation conplete flag
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
ViPrintf(vi, "*OPC\n"); /| Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"% ", & ngDone); /1 Waits for setup to conplete

/1 Print user information
printf("Press Local on instrunent front panel to return to manual node\n");
printf("\n"); /'l Prints new |ine character

/1 Close the sessions
vi G ose(vi);

vi Cl ose(defaul tRV;
}

Reading the Data Questionable Status Register Using VISA and C

In this example, the signal generator’s data questionable status register is read. You will be asked to
set up the signal generator for error generating conditions. The data questionable status register will
be read and the program will notify the user of the error condition that the setup caused. Follow the
user prompts presented when the program runs. Launch Microsoft Visual C++ 6.0, add the required
files, and enter the following code into your .cpp source file. vi saex9. cpp performs the following
functions:

¢ error checking

¢ clears the signal generator

* resets the signal generator

* the data questionable status register is enabled to read an unleveled condition

e prompts user to manually set up the signal generator for an unleveled condition

* queries the data questionable status register for any set bits and converts the string data to
numeric

* based on the numeric value, program checks for a corresponding status check value

¢ similarly checks for over or undermodulation condition

The following program example is available on the signal generator Documentation CD-ROM as
vi saex9. cpp.

//***
/1 PROGRAM NAME: vi saex9. cpp
11

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 97

Programming Examples
GPIB Programming Interface Examples

/| PROGRAM DESCRI PTION: In this exanple, the data questionable status register is read.

/1 The data questionable status register is enabled to read an unlevel ed condition.

/1 The signal generator is then set up for an unlevel ed condition and the data

/'l questionable status register read. The results are then displayed to the user.

/1 The status questionable register is then setup to nonitor a nodul ation error condition.
/1 The signal generator is set up for a nodulation error condition and the data

/1 questionable status register is read.

/'l The results are displayed to the active wi ndow.

11

[FRF R R K Rk kA kK kK KKK A KKK KRk KA KKK KKK KA KKK IR A KA KKK KA A KA KKK IR A KA KKK A A KKK KR A KKK KKKk Kk x*

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostrean»
#i ncl ude <coni o. h>

void main ()

{

Vi Session defaul tRM vi;// Declares a variables of type Vi Session
/1 for instrument communication

Vi Status viStatus = 0;// Declares a variable of type ViStatus

Il for GPIB verifications

int nunv0;// Declares a variable for switch statements

char rdBuffer[256] ={0}; Il Declare a variable for response data

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA session
/| Open session to GPIB device at address 19

vi St at us=vi Open(defaul tRM "GPIB::19::1NSTR', VI_NULL, VI_NULL, &vi);
i f(viStatus){ I/ |f problems, then pronpt user
printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("\n");

viCear(vi);// Cears the signal generator

/1l Prints user infornation

printf("Programm ng exanple to denpbnstrate reading the signal generator's
Status Byte\n");

printf("\n");
printf("Manually set up the sig gen for an unlevel ed output condition:\n");
printf("* Set signal generator output anplitude to +20 dBmin");

98 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf("* Set frequency to maximum val ue\n");

printf("* Turn On signal generator's RF Qutput\n");

printf("* Check signal generator's display for the UNLEVEL annunciator\n");

printf("\n");

printf("Press Enter when ready\n");

printf("\n");

getch(); /1 Waits for keyboard user input

Vi Printf(vi, "STAT: QUES: PON ENAB 2\ n"); /1 Enabl es the Data Questionabl e
/| Power Condition Register Bits

// Bits '0" and '1'

Vi Printf(vi, "STAT: QUES: PON COND?\ n"); /1 Querys the register for any
/1l set bits

vi Scanf (vi, "%", rdBuffer); // Reads the decimal sum of the
/1l set bits

nune(int (rdBuffer[1]) -('0")); /1 Converts string data to

/'l nuneric

switch (num /1 Based on the decinmal val ue
{

case 1:
printf("Signal Generator Reverse Power Protection Tri pped\n");
printf("/n");
br eak;

case 2:
printf("Signal Generator Power is Unleveled\n");
printf("\n");
br eak;

defaul t:
printf("No Power Unlevel ed condition detected\n");
printf("\n");
}
viCear(vi); /1 Clears the signal generator

/1 Prints user infornation

[L G T \n");
printf("\n");
printf("Manually set up the sig gen for an unlevel ed output condition:\n");
printf("\n");
printf("* Select AM nodul ation\n");
printf("* Select AM Source Ext 1 and Ext Coupling AC\n");

printf("* Turn On the nodul ation.\n");
printf("* Do not connect any source to the input\n");
printf("* Check signal generator's display for the EXT1 LO annunci ator\n");

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 99

Programming Examples
GPIB Programming Interface Examples

printf("\n");
printf("Press Enter when ready\n");
printf("\n");
getch(); /1 Waits for keyboard user input
viPrintf(vi, "STAT: QUES: MOD: ENAB 16\n"); // Enables the Data Questionable
// Mbdul ation Condition Register
/1l bits '0',"1,"2","3" and '4'

vi Printf(vi, "STAT: QUES: MOD: COND?\ n") ; Il Querys the register for any
/1l set bits

vi Scanf (vi, "%", rdBuffer); /1 Reads the decimal sum of the
/1l set bits

nune(int (rdBuffer[1]) -('0")); // Converts string data to nuneric

switch (num /1 Based on the deci nal val ue

{

case 1:
printf("Signal Generator Mdulation 1 Undernod\n");

printf("\n");
br eak;
case 2:

printf("Signal Generator Mdulation 1 Overnod\n");

printf("\n");
br eak;
case 4:

printf("Signal Generator Mdulation 2 Undernod\n");

printf("\n");
br eak;
case 8:

printf("Signal Generator Mdulation 2 Overnod\n");

printf("\n");
br eak;
case 16:

printf("Signal Generator Mdulation Uncalibrated\n");
printf("\n");
br eak;
defaul t:
printf("No Problens with Mdul ation\n");
printf("\n");
}
/1 Cose the sessions
vi C ose(vi);
vi Cl ose(defaul tRV;

100 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

Reading the Service Request Interrupt (SRQ) Using VISA and C

This example demonstrates use of the Service Request (SRQ) interrupt. By using the SRQ, the
computer can attend to other tasks while the signal generator is busy performing a function or
operation. When the signal generator finishes its operation, or detects a failure, then a Service
Request can be generated. The computer will respond to the SRQ and, depending on the code, can
perform some other operation or notify the user of failures or other conditions.

This program sets up a step sweep function for the signal generator and, while the operation is in
progress, prints out a series of asterisks. When the step sweep operation is complete, an SRQ is
generated and the printing ceases.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file. vi saex10. cpp performs the following functions:

¢ error checking

¢ clears the signal generator

* resets the signal generator

¢ prompts user to manually begin the step sweep and waits for response

e clears the status register

* sets up the operation status group to respond to an end of sweep

* the data questionable status register is enabled to read an unleveled condition

e prompts user to manually set up the signal generator for an unleveled condition

* queries the data questionable status register for any set bits and converts the string data to
numeric

* based on the numeric value, program checks for a corresponding status check value

¢ similarly checks for over or undermodulation condition

The following program example is available on the signal generator Documentation CD-ROM as
vi saex10. cpp.

[Rk R Rk Rk R R KK R R KRR kR KRR K KRR R K R R KRk R R KK R R KKK
11

/1 PROGRAM FI LE NAME: vi saex10. cpp

11

/1 PROGRAM DESCRI PTI ON: This exanpl e denonstrates the use of a Service Request (SRQ

/1 interrupt. The program sets up conditions to enable the SRQ and then sets the signa
/1 generator for a step node sweep. The programw ||l enter a printing | oop which prints
/1 an * character and ends when the sweep has conpl eted and an SRQ received

11

[] RFE KKKk ok k ok ok ok k ok ok kkkkkkkkkkkkkk ok kkkkk Kk ok kkhkkkkkhkkkkkkkkkhkkhkkkkhkkkkhkkhkkkk kK k ok

#i nclude "visa.h"
#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 101

Programming Examples
GPIB Programming Interface Examples

#i nclude "wi ndows. h"
#i ncl ude <coni o. h>

#define MAX_CNT 1024

int sweep=1; // End of sweep flag

/* Prototypes */

Vi Status _VI_FUNCH i nterupt (Vi Session vi, ViEventType eventType, ViEvent event, Vi Addr addr);

int min ()

{

Vi Session defaul tRM vi;// Declares variables of type ViSession

/1 for instrument communication

Vi Status viStatus = 0;// Declares a variable of type ViStatus
/1 for GPIB verifications

char rdBuffer[MAX_CNT];// Declare a block of nmenory data

vi St at us=vi OpenDef aul t RM &defaul tRM;// Initialize VISA session
if(viStatus < VI_SUCCESS){// |f problenms, then pronpt user
printf("ERROR initializing VISA... exiting\n");
printf("\n");
return -1;}

/1 Open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 |f problenms then pronpt user

printf("ERROR Could not open communication wth
i nstrunment\n");

printf("\n");
return -1;}

viCear(vi); /'l Clears the signal generator
VviPrintf(vi, "*RST\n"); /| Resets signal generator

/1 Print program header and information
printf("** End of Sweep Service Request **\n");
printf("\n");

printf("The signal generator will be set up for a step sweep nopde
operation.\n");

printf("An "*’ will be printed while the instrument is sweeping. The end of
\n");

printf("sweep will be indicated by an SRQ on the GPIB and the programwil |
end.\n");

printf("\n");

102 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf("Press Enter to continue\n");
printf("\n");
getch();

VviPrintf(vi, "*CLS\n");// Clears signal generator status byte

Vi Printf(vi, "STAT: OPER NTR 8\n");// Sets the Operation Status Group // Negative Transition Filter to
indicate a // negative transition in Bit 3 (Sweeping)

/1 which will set a corresponding event in // the Operation Event Register. This occurs // at the end
of a sweep.

viPrintf(vi, "STAT: OPER PTR 0\n");// Sets the Operation Status Goup // Positive Transition Filter so
that no

/1 positive transition on Bit 3 affects the // Operation Event Register. The positive // transition
occurs at the start of a sweep.

viPrintf(vi, "STAT: OPER ENAB 8\n");// Enables Operation Status Event Bit 3 // to report the event to
Status Byte // Register Summary Bit

viPrintf(vi, "*SRE 128\n");// Enables Status Byte Register Sunmary Bit 7
/1 The next line of code indicates the // function to call on an event

vi Status = vilnstall Handl er(vi, VI_EVENT_SERVICE_REQ interupt, rdBuffer);
/1 The next line of code enables the // detection of an event

vi Status = vi Enabl eEvent (vi, VI_EVENT_SERVI CE_REQ VI _HNDLR, VI _NULL);

viPrintf(vi, "FREQ MODE LIST\n");// Sets frequency node to |ist
ViPrintf(vi, "LIST: TYPE STEP\n");// Sets sweep to step

ViPrintf(vi, "LIST: TRIG SOUR IMMn");// Immediately trigger the sweep
viPrintf(vi, "LIST: MODE AUTONn");// Sets node for the |ist sweep
viPrintf(vi, "FREQ STAR 40 MHZ\n"); // Start frequency set to 40 MHz
viPrintf(vi, "FREQ STOP 900 MHZ\n");// Stop frequency set to 900 Mz
ViPrintf(vi, "SWE:PON 25\n");// Set nunber of points for the step sweep
ViPrintf(vi, "SWEDWEL .5 S\n");// Allow .5 sec dwell at each point

ViPrintf(vi, "IINIT: CONT OFF\n");// Set up for single sweep
ViPrintf(vi, "TRIG SOUR IMAn");// Triggers the sweep
VviPrintf(vi, "INNT\n"); // Takes a single sweep
printf("\n");

/1 \Wile the instrument is sweeping have the
/1 program busy with printing to the display.
Il The Sleep function, defined in the header
/1 file windows.h, wll pause the program
/'l operation for .5 seconds

whil e (sweep==1){

printf("*");

Sl eep(500) ; }

printf("\n");

/1 The following lines of code will stop the
/1 events and close down the session

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 103

Programming Examples
GPIB Programming Interface Examples

vi St at us
vi St at us

vi St at us
vi St at us
return O;

vi Di sabl eEvent (vi, VI _ALL_ENABLED EVENTS, VI _ALL_MECH) ;

vi Uni nstal | Handl er (vi,

vi Cl ose(vi);
vi Cl ose(defaul tRM ;

VI _EVENT_SERVI CE_REQ, interupt,
rdBuffer);

/1 The follow ng function is called when an SRQ event occurs. Code specific to your

/1 requirenments woul d be entered in the body of the function.

Vi Status _VI_FUNCH i nterupt (Vi Session vi, ViEventType eventType, ViEvent event, Vi Addr
addr)

{

Vi St at us st at us;
Viu nt16 stb;

status =

vi ReadSTB(vi ,

&stb);// Reads the Status Byte

sweep=0;// Sets the flag to stop the "*' printing

printf("\n");// Print user
printf("An SRQ
vi C ose(event);// Coses the event

return VI _SUCCESS;

}

i nformation

i ndi cating end of sweep has occurred\n");

104

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

Using 8757D Pass-Thru Commands (PSG with Option 007 Only)

Pass-thru commands enable you to temporarily interrupt ramp sweep system interaction so that you
can send operating instructions to the PSG. This section provides setup information and an example
program for using pass-thru commands in a ramp sweep system.

Equipment Setup

To send pass-thru commands, set up the equipment as shown in Figure 3-1. Notice that the GPIB
cable from the computer is connected to the GPIB interface bus of the 8757D.

Figure 3-1
COMPUTER =)

/ ~. =
=
||:| GPIB

BNC Cable
7
BNC Cable
GPIB
BNC Cable Cable
GPIB Cable Sweep| Pos
Z-Axis 8757 Z
Blank/Mkrs GPIB System Interface Blank

9 S 8888 ° T

(o] ooo O

o % pofo

o e

(o] =—————oonoooo C

m 0 0 o0 l

a4

RF
SIGNAL outeut CALA
SCALAR
DUT Detector
GENERATOR — — NETWORK
ANALYZER

scaler netwk pc

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 105

Programming Examples
GPIB Programming Interface Examples

GPIB Address Assignments

Figure 3-1 describes how GPIB addresses should be assigned for sending pass-thru commands. These
are the same addresses used in Example 3-1.

Table 3-1
Instrument GPIB Key Presses/Description
Address

PSG/E8663B 19 Press Utility > GPIB/RS-232 LAN > GPIB Address > 19 > Enter.

8757D 16 Press LOCAL > 8757 > 16 > Enter.

8757D (Sweeper) 19 This address must match the PSG or E8663B.

Press LOCAL > SWEEPER > 19 > Enter.

Pass Thru 17 The pass thru address is automatically selected by the 8757D by inverting
the last bit of the 8757D address. Refer to the 8757D documentation for
more information. Verify that no other instrument is using this address
on the GPIB bus.

Example Pass-Thru Program

Example 3-1 on page 106 is a sample Agilent BASIC program that switches the 8757D to pass-thru
mode, allowing you to send operating commands to the PSG or E8663B. After the program runs,
control is given back to the network analyzer. The following describes the command lines used in the
program.

Line 30 PT is set to equal the source address. C1 is added, but not needed, to specify the
channel.

Lines 40, 90 The END statement is required to complete the language transition.

Lines 50, 100 A WAIT statement is recommended after a language change to allow all instrument

changes to be completed before the next command.

Lines 70, 80 This is added to ensure that the instrument has completed all operations before
switching languages. Lines 70 and 80 can only be used when the signal generator
is in single sweep mode.

Line 110 This takes the network analyzer out of pass-thru command mode, and puts it back
in control. Any analyzer command can now be entered.

Example 3-1 Pass-Thru Program

10 ABCRT 7

20 CLEAR 716

30 QUTPUT 716; " PT19; C1"

40 QUTPUT 717;" SYST: LANG SCPI "; END

50 WAIT .5

60 QUTPUT 717; " PON STAT CFF'

106 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

70 QUTPUT 717;"*CPC?"
80 ENTER 717; Reply

90 QUTPUT 717;" SYST: LANG COVP'; END
100 WAI T .5

110 OUTPUT 716;"C2"

120 END

8757D Pass-Thru Troubleshooting

If you experience problems with setting the sweep time on the instrument and running this program,
with the 8757D:

1. Insert line 25, that saves state 1 (SV1).
25 QUTPUT 716; " SV1”

2. Insert line 55, that sets the sweep-time of the source, :SWE:TIME <val>.
55 QUTPUT 717;": SWE TI ME . 200S’

3. Insert line 56, that saves the state into the register, sequence 0, register 1, *SAV
<reg_num>[,<seq_num>], (* SAV 1, 0).

56 QUTPUT 717;"*SAV 1,0
4. Insert line 115, that recalls state 1, (RCL1).
115 QUTPUT 717;” RCL”

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 107

Programming Examples
LAN Programming Interface Examples

LAN Programming Interface Examples

NOTE Before using the LAN examples: The LAN programming examples in this section demonstrate
the use of VXI-11 and Sockets LAN to control the signal generator. For details on using FTP
and TELNET refer to “Using FTP” on page 46 and “Using Telnet LAN” on page 42 of this
guide.

To use these programming examples you must change references to the IP address and
hostname to match the IP address and hostname of your signal generator.

“VXI-11 Programming Using SICL and C++” on page 109
“VXI-11 Programming Using VISA and C++” on page 110
“Sockets LAN Programming and C” on page 112
“Sockets LAN Programming Using Java” on page 136
“Sockets LAN Programming Using PERL” on page 138

For additional LAN programming examples that work with user-data files, refer to:

¢ “Save and Recall Instrument State Files” on page 343

VXI-11 Programming

The signal generator supports the VXI-11 standard for instrument communication over the LAN
interface. Agilent I0 Libraries support the VXI-11 standard and must be installed on your computer
before using the VXI-11 protocol. Refer to “Using VXI-11” on page 40 for information on configuring
and using the VXI-11 protocol.

The VXI-11 examples use TCPIPO as the board address.

Using VXI-11 with GPIB Programs

The GPIB programming examples that use the VISA library, and are listed in this section, can be
easily changed to use the LAN VXI-11 protocol by changing the address string. For example, change
the "GPIB::19::INSTR" address string to "TCPIP::hostname: INSTR" where hostname is the IP address
or hostname of the signal generator. The VXI-11 protocol has the same capabilities as GPIB. See the
section “Setting Up the LAN Interface” on page 29 for more information.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI- 11 SCPI service. For more information, refer to “Configuring the DHCP LAN (Agilent
MXG)” on page 33 and “Configuring the DHCP LAN (ESG/PSG/E8663B)” on page 34.

108 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

VXI-11 Programming Using SICL and C++

The following program uses the VXI-11 protocol and SICL to control the signal generator. Before
running this code, you must set up the interface using the Agilent I0 Libraries I0 Config utility.

vXi si cl . cpp performs the following functions:

* sets signal generator to 1 GHz CW frequency
¢ queries signal generator for an ID string
¢ error checking

The following program example is available on the signal generator Documentation CD-ROM as
vXxi si cl . cpp.

//**
11

/1 PROGRAM NAME: vxi si cl . cpp

11

/| PROGRAM DESCRI PTI ON: Sanpl e test programusing SICL and the VXI-11 protocol

11

/1 NOTE: You nmust have the Agilent IO Libraries installed to run this program

11

/1 This exanpl e uses the VXI-11 protocol to set the signal generator for a 1 gHz CW// frequency. The
signal generator is queried for operation conplete and then queried

/1 for its ID string. The frequency and ID string are then printed to the display.

I

/1 1 MPORTANT: Enter in your signal generators hostnanme in the instrumentNane decl aration
Il where the "xxxxx" appears.

I
//**
#i ncl ude "stdafx. h"

#i ncl ude <sicl.h>

#i nclude <stdlib. h>

#i ncl ude <stdio. h>

int main(int argc, char* argv[])

{

I NST id; /1 Device session id

int opcResponse; /1 Variable for response flag

char instrumentName[] = "xxxxx"; // Put your instrunment's hostnane here

char instNanmeBuf[256];// Variable to hold instrument nanme

char buf[256];// Variable for id string

ionerror(l_ERROR EXIT);// Register SICL error handler

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 109

Programming Examples
LAN Programming Interface Examples

/1 Open SICL instrument handl e using VX -11 protocol

sprintf(instNaneBuf, "lan[%]:inst0", instrunmentNane);

id = iopen(instNaneBuf);// Open instrunment session
itimeout(id, 1000);// Set 1 second tinmeout for operations
printf("Setting frequency to 1 Ghz...\n");

iprintf(id, "freq 1 GHz\n");// Set frequency to 1 GHz

printf("Waiting for source to settle...\n");
iprintf(id, "*opc?\n");// Query for operation conplete
iscanf(id, "%", &opcResponse); // Operation conplete flag
if (opcResponse != 1)// |f operation fails, pronpt user
{

printf("Bad response to 'OPC?'\n");

iclose(id);

exit(1);
}
iprintf(id, "FREQAn");// Query the frequency
iscanf(id, "%", &buf);// Read the signal generator frequency
printf("\n");// Print the frequency to the display
printf("Frequency of signal generator is %\n", buf);
ipromptf(id, "*IDN?\n", "%", buf);// Query for id string
printf("Instrument ID: %\n", buf);// Print id string to display
iclose(id);// Cose the session

return O;

}
VXI-11 Programming Using VISA and C++

The following program uses the VXI-11 protocol and the VISA library to control the signal generator.
The signal generator is set to a -5 dBm power level and queried for its ID string. Before running this
code, you must set up the interface using the Agilent IO Libraries I0 Config utility. vXi vi sa. cpp
performs the following functions:

* sets signal generator to a -5 dBm power level
e queries signal generator for an ID string
¢ error checking

The following program example is available on the signal generator Documentation CD-ROM as
VXi vi sa. cpp.

//**
/1 PROGRAM FI LE NAME: vxi vi sa. cpp

/1 Sanple test programusing the VISA libraries and the VXI-11 protocol

11

110 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

// NOTE: You nmust have the Agilent Libraries installed on your conputer to run
/1 this program

11

/| PROGRAM DESCRI PTI ON: Thi s exanpl e uses the VXI-11 protocol and VI SA to query
/1 the signal generator for its ID string. The ID string is then printed to the
Il screen. Next the signal generator is set for a -5 dBm power |evel and then
/1 queried for the power level. The power level is printed to the screen.

11

/1 | MPORTANT: Set up the LAN Client using the 10 Config utility

11

[R KR K Kk kA kK KK R K KA KK KKK Kk A A K KKK R KKK KA KKK KA KR KKK A KA KKK KA KA KKK IR KKK KKK A KRR A KKK IR KK A Kk

#i ncl ude <visa. h>
#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#include <stdlib. h>
#i ncl ude <conio. h>

#def i ne MAX_COUNT 200

int main (void)

Vi Status status;// Declares a type Vi Status variable

Vi Session defaul tRM instr;// Declares a type Vi Session variable
Viunt32 retCount;// Return count for string I/O

Vi Char buffer[MAX_COUNT];// Buffer for string I/O

status = vi OpenDef aul t RM &def aul t RV ; /1 Initialize the system
// Open communi cation with Serial
/1l Port 2

status = vi Open(defaul tRM "TPCI PO::19::INSTR', VI_NULL, WVI_NULL, & nstr);

if(status){ /1 |f problens then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}
/1 Set timeout for 5 seconds

vi Set Attribute(instr, VI_ATTR_TMO VALUE, 5000);

/1 Ask for sig gen ID string

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 111

Programming Examples
LAN Programming Interface Examples

status = viWite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

// Read the sig gen response
status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= "\0"; /1 Indicate the end of the string
printf("Signal Generator ID="); /'l Print header for ID
printf(buffer); /1 Print the ID string
printf("\n"); /'l Print carriage return

/1 Flush the read buffer

I/ Set sig gen power to -5dbm
status = viWite(instr, (ViBuf)"PONAWL -5dbmn", 15, &retCount);

Il Query the power |evel
status = viWite(instr, (ViBuf)"PON\n",5, & etCount);

/'l Read the power |evel
status = vi Read(instr, (ViBuf)buffer, MAX COUNT, &retCount);

buffer[retCount]= "\0"; /1 Indicate the end of the string
printf("Power level ="); /1 Print header to the screen
printf(buffer); /1 Print the queried power |evel
printf("\n");

status = vi Cl ose(instr); /1 Close down the system

status = vi Cl ose(defaul tRV;
return O;

}

Sockets LAN Programming and C

The program listing shown in “Queries for Lan Using Sockets” on page 115 consists of two files;
lanio.c and getopt.c. The lanio.c file has two main functions; i nt main() and an i nt nai nl().

The i nt mai n() function allows communication with the signal generator interactively from the
command line. The program reads the signal generator's hostname from the command line, followed
by the SCPI command. It then opens a socket to the signal generator, using port 5025, and sends the
command. If the command appears to be a query, the program queries the signal generator for a
response, and prints the response.

The i nt mai n1(), after renaming to i nt mai n(), will output a sequence of commands to the signal
generator. You can use the format as a template and then add your own code.

This program is available on the signal generator Documentation CD-ROM as | ani o. c.

Sockets on UNIX

In UNIX, LAN communication via sockets is very similar to reading or writing a file. The only
difference is the openSocket () routine, which uses a few network library routines to create the
TCP/IP network connection. Once this connection is created, the standard fread() and fwite()
routines are used for network communication. The following steps outline the process:

1. Copy the lanio.c and getopt.c files to your home UNIX directory. For example, /users/ nydir/.

112 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

At the UNIX prompt in your home directory type: cc -Aa -O -0 lanio lanio.c

3. At the UNIX prompt in your home directory type: . /| ani o xxxxx “*| DN?” where XxXXXxX is the

hostname for the signal generator. Use this same format to output SCPI commands to the signal
generator.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 113

Programming Examples
LAN Programming Interface Examples

The i nt mai n1() function will output a sequence of commands in a program format. If you want to
run a program using a sequence of commands then perform the following:

1. Rename the lanio.c int mainl() to int main() and the original int main() to int nainl().

2. In the mai n(), openSocket () function, change the “your hostname here” string to the hostname
of the signal generator you want to control.

3. Re-save the lanio.c program.

4. At the UNIX prompt type: cc -Aa -O -0 lanio lanio.c

5. At the UNIX prompt type: ./l ani o

The program will run and output a sequence of SCPI commands to the signal generator. The UNIX

display will show a display similar to the following:

uni x machi ne: /users/nydir
$./lanio
ID Agilent Technol ogi es, E4438C, US70000001, C. 02.00

Frequency: +2. 5000000000000E+09
Power Level: -5.00000000E+000

Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not work on
sockets. The following steps outline the process for running the interactive program in the Microsoft
Visual C++ 6.0 environment:

1. Rename the lanio.c to lanio.cpp and getopt.c to getopt.cpp and add them to the Source folder of
the Visual C++ project.

NOTE The int main() function in the lanio.cpp file will allow commands to be sent to the signal
generator in a line-by-line format; the user types in SCPI commands. The int main1(0)
function can be used to output a sequence of commands in a “program format.” See
Programming Using mainl() Function below.

2. Click Rebuild All from Build menu. Then Click Execute Lanio.exe. The Debug window will appear with
a prompt “Press any key to continue.” This indicates that the program has compiled and can be
used to send commands to the signal generator.

Click Start, click Programs, then click Command Prompt. The command prompt window will appear.

At the command prompt, cd to the directory containing the lanio.exe file and then to the Debug
folder. For example C:\SocketIO\Lanio\Debug.

5. After you cd to the directory where the lanio.exe file is located, type in the following command at
the command prompt: | ani 0 xxxxx “*| DN?”. For example:
C.\ Socket | O Lani o\ Debug>l ani 0 xxxxx “*| DN?” where the xxxxx is the hostname of your
signal generator. Use this format to output SCPI commands to the signal generator in a line by
line format from the command prompt.

114 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

6. Type exit at the command prompt to quit the program.

Programming Using main1() Function

The i nt mai n1() function will output a sequence of commands in a program format. If you want to
run a program using a sequence of commands then perform the following:

1. Enter the hostname of your signal generator in the openSocket function of the mai n1() function
of the lanio.cpp program.

2. Rename the lanio.cpp i nt mai n1() function to i nt nai n() and the original i nt mai n() function
to int mainl().

3. Select Rebuild All from Build menu. Then select Execute Lanio.exe.

The program will run and display results similar to those shown in Figure 3-2.

Figure 3-2 Program Output Screen

& "C:\GPIB\Test\lanio\Debug\Lanio.exe"
ID: Agilent Technologies, E8663B, US00000001, C.01.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Press any key to continue_

AnfA A

Queries for Lan Using Sockets

| ani 0. ¢ and getopt. c perform the following functions:

establishes TCP/IP connection to port 5025

resultant file descriptor is used to “talk” to the instrument using regular socket I/O mechanisms
maps the desired hostname to an internal form

error checks

queries signal generator for ID

sets frequency on signal generator to 2.5 GHz

sets power on signal generator to -5 dBm

gets option letter from argument vector and checks for end of file (EOF)

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 115

Programming Examples
LAN Programming Interface Examples

The following programming examples are available on the signal generator Documentation CD-ROM as
| ani 0. ¢ and getopt. c.

/***
* $Header: | anio.c 04/24/01

* $Revision: 1.1 $

* $Date: 10/24/01

* PROGRAM NAME: | anio.c

*

* $Description: Functions to talk to an Agilent signal generator

* via TCP/IP. Uses conmand-|ine argunents.

*

* A TCP/I P connection to port 5025 is established and
* the resultant file descriptor is used to "talk" to the
* instrunment using regular socket |/0O nmechanisns. $

*

*

*

* Exanpl es:

* Query the signal generator frequency:
* | ani o xx.xxx.xx.x ' FREQ?'

* Query the signal generator power |evel:
* lani o xx.xxx.xx.x ' PO

* Check for errors (gets one error):
* | ani 0 xX. XXX.xx.x ‘'syst:err?

* Send a list of coomands froma file, and nunber them

* cat scpi_cnds | lanio -n XX.XXX. XX. X

R R R R R

* This program conpiles and runs under

* - HP-UX 10.20 (UNI X), using HP cc or gcc:

* + cc -Aa -O-o0 lanio lanio.c

* + gcc -Wall -O -0 lanio lanio.c

*

* - Wndows 95, using Mcrosoft Visual C++ 4.0 Standard Edition
* - Wndows NT 3.51, using Mcrosoft Visual C++ 4.0

* + Be sure to add WSOCK32.LIB to your list of libraries!
* + Conpile both lanio.c and getopt.c

116 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples

LAN Programming Interface Examples

* + Consider re-nanming the files to |anio.cpp and getopt.cpp

* Considerations:

* - On UNIX systens, file |I/O can be used on network sockets.

* Thi s makes programn ng very conveni ent, since routines |ike

* getc(), fgets(), fscanf() and fprintf() can be used. These

* routines typically use the |ower level read() and wite() calls.

*

* - In the Wndows environnment, file operations such as read(), wite(),
* and cl ose() cannot be assunmed to work correctly when applied to

* sockets. Instead, the functions send() and recv() MJST be used.

KR KKk KKK KKK Rk KA K KKK R K KA A KR KKK A KK A IR KK I KA KKK A KKK IR A KKK KKK KA KK IR ARk k[

/* Support both Wn32 and HP-UX UNI X environnent */

#i fdef _WN32 /* Visual C++ 6.0 will define this */
define W NSOCK
#endi f

#i f ndef W NSOCK
ifndef _HPUX_SOURCE
define _HPUX_SOURCE

endif

#endi f

#i nclude <stdio. h> /* for fprintf and NULL */
#i nclude <string. h> /* for mencpy and nenset */
#include <stdlib. h> /* for malloc(), atol () */
#i ncl ude <errno. h> /* for strerror */

#i f def W NSOCK

#i ncl ude <wi ndows. h>

i fndef _W NSOCKAPI _
include <wi nsock.h> // BSD-style socket functions

endif

#el se /* UNI X with BSD sockets */
include <sys/socket.h> /* for connect and socket*/
include <netinet/in.h> /* for sockaddr_in */

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

117

Programming Examples
LAN Programming Interface Examples

include <netdb. h> /* for gethostbynanme */

define SOCKET_ERROR (-1)
define | NVALI D_SOCKET (-1)

typedef int SOCKET;

#endi f /* WNSOCK */

#i f def W NSOCK
/* Declared in getopt.c. See exanple prograns disk. */
extern char *optarg;
extern int optind;
extern int getopt(int argc, char * const argv[], const char* optstring);
#el se
include <unistd.h> /* for getopt(3C) */
#endi f

#define COMWAND_ERROR (1)
#define NO_CMD_ERROR (0)

#define SCPI _PORT 5025
#define | NPUT_BUF_SI ZE (64*1024)

[R AR KK Ak A Ak KKK KKK KKK KKK KA KKK IR A KA KKK KR KA KKK IR A K KKK AR KKK KKK KA KA KR A K

* Display usage

KKKk KAk KKK KKK K KA K KR K KA A KKK KR A KA KKK KA KA KKK KR A KA KKK KKK KKK KKK KA K KKK * Kk k[

static void usage(char *basenane)

{
fprintf(stderr,"Usage: % [-nqu] <hostname> [<conmand>]\n", basenane);
fprintf(stderr,” % [-nqu] <hostname> < stdin\n", basenane);
fprintf(stderr,” -n, nunber output lines\n");
fprintf(stderr,"” -q, quiet; do NOT echo lines\n");
fprintf(stderr,"” -e, show nessages in error queue when done\n");

}

#i f def W NSOCK

int init_w nsock(void)

118 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

int

}

WORD wWer si onRequest ed;

WBADATA wsaDat a;

int err;

wWer si onRequested = MAKEWORD(1, 1);
MAKEWORD(2, 0);

wVer si onRequest ed
err = WBASt artup(wer si onRequest ed, &wsaDat a) ;
if (err 1=0) {

/* Tell the user that we couldn't find a useable */
/* winsock.dll. */

fprintf(stderr, "Cannot initialize Wnsock 1.1.\n");

return -1;

}

return O;

cl ose_wi nsock(voi d)

WBAC eanup() ;
return O;

#endif /* WNSOCK */

Programming Examples
LAN Programming Interface Examples

[R AR KR Kk Kk K R K K KK Rk KA K KKK KKK A KR KKK KA KKK IR KA KKK KR KKK KK IR KA KKK KKK h Kk x

*

>

*

*

*

*

*

$Function: openSocket$

$Description: open a TCP/IP socket connection to the instrument $

$Paraneters: $

(const char *) hostname Network nane of instrunent.
This can be in dotted decimal notation.
(int) portNumber The TCP/IP port to talk to.
Use 5025 for the SCPI
$Ret ur n: (int) Afile descriptor similar to open(1l).$%$

$Errors: returns -1 if anything goes wong $

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

119

Programming Examples
LAN Programming Interface Examples

*

KR KKk KRR KKK Rk KA KKK KKK KA KKK KKK KA K KK IR A K KKK KA KA A KKK IR KKK KA KKK AKX KKKk h kK [

SOCKET openSocket (const char *hostnanme, int portNunber)

{
struct hostent *hostPtr;
struct sockaddr_in peeraddr_in;
SOCKET s;
nenset (&peeraddr_in, 0, sizeof(struct sockaddr_in));
/***/
/* map the desired host nane to internal form */
/***/
host Ptr = get host byname(host nane) ;
if (hostPtr == NULL)
{
fprintf(stderr,"unable to resolve hostnane '%'\n", hostnane);
return | NVALI D_SOCKET;
}
/*******************/
/* create a socket */
/*******************/
s = socket (AF_I NET, SOCK_STREAM 0);
if (s == I NVALI D_SOCKET)
{
fprintf(stderr,"unable to create socket to '%': %\n",
host nane, strerror(errno));
return | NVALI D_SOCKET;
}
nencpy(&eeraddr_i n. si n_addr.s_addr, hostPtr->h_addr, hostPtr->h_|l ength);
peeraddr _in.sin_famly = AF_I NET;
peeraddr _in.sin_port = htons((unsigned short)portNunber);
if (connect(s, (const struct sockaddr*)&peeraddr_in,
si zeof (struct sockaddr_in)) == SOCKET_ERROR)
{
fprintf(stderr,"unable to create socket to '%': %\n",
host nane, strerror(errno));
return | NVALI D_SOCKET;
120 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

return s;

[R AR KA Kk Kk K Rk K KK Rk KA KK KKK Ak A A KR KKK KA KKK IR KA KA KKK KA KKK IR KKK K KKK K h Kk x

*

*

*

$Functi on: commandl nstrunment $

$Description: send a SCPI command to the instrument.$

$Paraneters: $

(FILE*) file pointer associated with TCP/IP socket.
(const char *command) . . SCPI command string.

$Return: (char *) a pointer to the result string.

$Errors: returns 0 if send fails $

KKKk KKK KKK KK KA KKK KKK KA KKK KKK KA KKK F KA K KKK KKK KA KKK IR KKK KA KKK AKX KKKk * kK [

int conmandl nstrunent (SOCKET sock,

const char *command)
int count;
/* fprintf(stderr, "Sending \"%\".\n", comand); */

if (strchr(command, '\n') == NULL) {
fprintf(stderr, "Warning: missing newine on command %.\n", conmmand);

count = send(sock, command, strlen(command), O0);
if (count == SOCKET_ERROR) {
return COVMVAND_ERROR;

return NO_CVD_ERROR,

[R AR KK KK Kk A Ak KKK KKK KKK KKK KA KKK IR A K A KKK KR A KA KKK IR KKK KKK AR AR KKK A A I A KKKk

*

recv_line(): simlar to fgets(), but uses recv()

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 121

Programming Examples
LAN Programming Interface Examples

KKKk KKK KKK Rk KA KK KK KKK KA KKK IR KKK KKK A KA K KKK AR K KKK KA KKK KKK KA K KKK KKk k[

char * recv_line(SOCKET sock, char * result, int maxLength)
{
#i f def W NSOCK

int cur_length = 0;

int count;

char * ptr = result;

int err = 1;

while (cur_length < maxLength) {
/* Get a byte into ptr */
count = recv(sock, ptr, 1, 0);

/* |If no chars to read, stop. */
if (count < 1) {
br eak;

}

cur_length += count;

/* If we hit a newine, stop. */

if (*ptr =="\n") {
ptr++;
err = 0;
br eak;
}
ptr++;
}
*ptr = '\0";
if (err) {
return NULL;
} else {
return result;
}
#el se

[FH KR KK Kk kA K K KK KKK KA KKK KR KKK KKK KKK A KKK IR A KA KKK KKK KKK KK IR KKK KKK Ak x*

* Sinpler UNI X version, using file I/O recv() version works too.
* This denpnstrates how to use file I/0O on sockets, in UN X

KKKk KKK KKK KKK KKK KKK A I KK F R A K KKK KA KKK KK IR AKX KKK KR KKK KA I KKK KKk x [

FILE * instFile;

122 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

instFile = fdopen(sock,
NULL)

paty

if (instFile ==

{
fprintf(stderr,

strerror(errno));

exit(2);

}

return fgets(result,

mexLength, instFile);

#endi f

}

"Unable to create FILE * structure :

Programming Examples
LAN Programming Interface Examples

%\ n",

[R AR KRRk Kk K K K K KK Rk KA K KKK KA KA A KR KKK KA KKK IR KA KKK KKK KA IR KA KKK KKK h Kk x

*

*

*

$Function: querylnstrunent$

$Description: send a SCPI command to the instrunent,
$Paraneters: $
(FILE *)

(const char *command)

file pointer
SCPI
where to put

command string.

(char *result) the result.
(size_t) maxLength . mexi mum si ze of

$Return: (I ong)

$Errors: returns O if anything goes wong. $

return a response. $

associated with TCP/ I P socket.

result array in bytes.

The nunber of bytes in result buffer.

R KKk K AR KKK KK KA KKK KKK KA A KR KKK KKK KA IR A KA KA KKK KA KKK F R KKK KA KKK A A KKK Xk * A K [

| ong queryl nstrument (SOCKET sock,

const char *command, char *result,
I ong ch;

char tnp_buf[8];

long resul tBytes = O;

int conmand_err;

int count;

size_t maxLengt h)

[HAE KKK KKK KA KKK IR I KK I KKK KA KKK KKK KKK I KR KKK KA KKK IR AKX KK XK

* Send conmand to signal generator

KKK KK KKK KKK KKK KKK KKK KA KKK KR KKK KK KKK A KKK KKK KK Fh K kx|

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

123

Programming Examples
LAN Programming Interface Examples

conmand_err = conmandl nstrunent (sock, command);
if (command_err) return COVWAND_ERROR;

[HAE KKK KKK KA KKK IR KKK KKK KKK KA KKK KR A KA KA KKK KA KKK IR AKX KKk x*

* Read response from signal generator
**/
count = recv(sock, tnp_buf, 1, 0); /* read 1 char */

ch = tnmp_buf[0];

if ((count < 1) || (ch == EOF) || (ch =="'\n"))

{
result = '\0"; / null termnate result for ascii */
return O;

}

/* use a do-while so we can break out */
do
{
if (ch =="#")
{
/* binary data encountered - figure out what it is */
long nunDigits;
| ong nunBytes = 0;
/* char length[10]; */

count = recv(sock, tnp_buf, 1, 0); /* read 1 char */
ch = tnmp_buf[0];
if ((count < 1) || (ch == EOF)) break; /* End of file */

if (ch<'0 || ch>"9") break; /* unexpected char */
nunDigits = ch - '0";

if (nunDigits)

{
/* read nunDigits bytes into result string. */
count = recv(sock, result, (int)nunDigits, 0);
result[count] = 0; /* null termnate */
nunBytes = atol (result);

}

i f (nunBytes)

124

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

{
resul tBytes = 0;
/* Loop until we get all the bytes we requested. */
/* Each call seens to return up to 1457 bytes, on HP-UX 9.05 */
do {
int rcount;
rcount = recv(sock, result, (int)nunBytes, 0);
resul tBytes += rcount;
resul t += rcount; /* Advance pointer */
} while (resultBytes < nunBytes);
[KRRk Rk KRk kR Rk Rk ok kR kR kR kR kR kR kK kR Rk
* For LAN dunps, there is always an extra trailing newine
* Since there is no EO line. For ASCII dunps this is
* great but for binary dunps, it is not needed.
Yy
if (resultBytes == nunBytes)
{
char junk;
count = recv(sock, & unk, 1, 0);
}
}
el se
{
/* indefinite block ... dunp til we can an extra line feed */
do
{
if (recv_line(sock, result, maxLength) == NULL) break;
if (strlen(result)==1 & *result == '\n") break;
resul tBytes += strlen(result);
result += strlen(result);
} while (1);
}
}
el se
{
/* ASCI| response (not a binary block) */

*result = (char)ch;

if (recv_line(sock, result+1, maxLength-1) NULL)

/* REMOVE trailing newine,
strlen(result);

if present.

resul t Bytes =

And term nate string.

return O;

*/

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

125

Programming Examples
LAN Programming Interface Examples

if (result[resultBytes-1] == '\n') resultBytes -= 1;
result[resul tBytes] = '\0";
}
} while (0);

return resul t Bytes;

IEEASEAS AR SRR AR RS ERERS RSt RS RsERsERsREEEReEEeES R
*

> $Function: showerrors$

*

* $Description: Query the SCPl error queue, until enpty. Print results. $
*

* $Return: (void)

*

KR KKk KK KKK R KKK KKK KKK KA KKK IR KKK KA KA A IR KKK KK A KA KKK A IR KK KKK KKK KAk h kK [

voi d showErrors(SOCKET sock)

{
const char * command = "SYST: ERR?\ n";

char result_str[256];

do {
queryl nstrument (sock, command, result_str, sizeof(result_str)-1);

/**
* Typical result_str:
* -221,"Settings conflict; Frequency span reduced."
* +0,"No error"
* Don't bother decoding.
**/
if (strncnp(result_str, "+0,", 3) == 0) {

/* Matched +0,"No error" */

br eak;

}

puts(result_str);
} while (1);

126 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

[RA KR Kk Kk K Ak K KK KK KA K KKK KA KA A KR KKK KA KKK I KA KA KKK KKK KK IR KA KKK KKK h Kk x
*

> $Function: isQery$

*

* $Description: Test current SCPI command to see if it a query. $

* $Return: (unsigned char) . . . non-zero if command is a query. O if not.

*
***/
unsi gned char isQuery(char* cnd)

unsi gned char q = 0 ;

char *query ;

[HAI KA KKK KKK KKK KKK KKK KKK KKK KKK KKK A KKK KA I KKK KK A Ak ok kK [

/* if the command has a '?" in it, use querylnstrunent. */
/* otherw se, sinply send the command. */
/* Actual ly, we nust be a nore specific so that */
/* marker value querys are treated as conmands. */
/* Exanple: SENS: FREQ CENT (CALCl: MARK1: X?) */
Ty
if ((query = strchr(cnd,"?")) !'= NULL)
{
/* Make sure we don't have a marker val ue query, or
* any command with a '?" followed by a ')' character.
* This kind of command is not a query fromour point of view
* The signal generator does the query internally, and uses the result.

*/
query++ ; /* bunp past '?'" */
while (*query)
{
if (*query =="' ") /* attenpt to ignore white spc */
query++ ;
el se break ;
}
if (*query !'=")"")
{
q=1;
}

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 127

Programming Examples
LAN Programming Interface Examples

}

return q ;

/***

*

> $Function: main$

*

* $Description: Read command |ine argunents, and talk to signal generator.
Send query results to stdout. $

*

* $Return: (int) . . . non-zero if an error occurs

*

KR KKk KKK KKK Rk KA KKK IR K KA KKK KKK KA IR A KA KA KKK KA KKK IR KKK I KKK A KKK Xk h kK [

int main(int argc, char *argv[])

{

SOCKET i nst Sock;

char *charBuf = (char *) nall oc(| NPUT_BUF_SI ZE) ;
char *basenane;

int chr;

char command[1024] ;

char *destination;

unsi gned char quiet = 0;

unsi gned char show errs = 0;

int nunber = 0;

basenanme = strrchr(argv[O0], '/');
if (basename != NULL)

basenane++ ;
el se

basenane = argv[0];

while ((chr = getopt(argc,argv, “qune")) != EOF)
switch (chr)

{
case 'q': quiet = 1; break;
case 'n': nunber = 1; break ;
case 'e': showerrs = 1; break ;
case 'u'
case '?': usage(basenane); exit(1) ;

128 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

/* now | ook for hostnanme and optional <command>*/
if (optind < argc)

Programming Examples
LAN Programming Interface Examples

{
destination = argv[optind++]
strcpy(command, "");
if (optind < argc)
{
while (optind < argc) {
/* <host nanme> <conmmand> provi ded; only one command string */
strcat (command, argv[optind++]);
if (optind < argc) {
strcat (command, " ");
} else {
strcat (command, "\n");
}
}
}
el se
{
/*Onl'y <hostnane> provided; input on <stdin> */
strcpy(command, "");
if (optind > argc)
{
usage(basenane) ;
exit(1);
}
}
}
el se
{
/* no hostname! */
usage(basenane) ;
exit(1);
}

[HAEF KKK KK KA KKK KR KKK A KKK KR KKK KKK KA KA KKK IR KKK KKk h Kk x %

/* open a socket connection to the instrunent

[HAAF A KKK KKK KKK KKK KKK KKK KKK KKK KKK KA KKK KA KA KKKk * kK [

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

129

Programming Examples
LAN Programming Interface Examples

#i f def W NSOCK
if (init_wnsock() !'=0) {
exit(1);
}
#endi f /* WNSOCK */

i nst Sock = openSocket (destination, SCPI_PORT);

if (instSock == | NVALI D_SOCKET) {
fprintf(stderr, "Unable to open socket.\n");
return 1;

}

/* fprintf(stderr, "Socket opened.\n"); */

if (strlen(command) > 0)

{

[HrFEF A KKK K KA KKK IR KKK I K KK KKK KA KKK IR KKK KA KKK R A IR K I XA KA KK

/* if the command has a '?' in it, use querylnstrunent. */

/* otherw se, sinply send the command. */

[HAE KKK KKK KA KKK IR KKK A KKK KKK KA KKK KKK KA KKK IR KKK KKK K AKX KK [

if (isQuery(comand))

{
| ong buf Bytes;
buf Byt es = queryl nstrunent (i nst Sock, conmand,
char Buf, | NPUT_BUF_SI ZE);
if (!'quiet)
{
fwite(charBuf, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout) ;
fflush(stdout);
}
}
el se
{
conmandl nst runent (i nst Sock, conmand);
}
}
el se
{

/* read a line from<stdin> */
while (gets(charBuf) != NULL)

{
if (!strlen(charBuf))

130 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

continue ;

if (*charBuf == "#" || *charBuf == "'1")

continue ;

strcat (charBuf, "\n");

if (lquiet)
{
i f (nunber)
{
char nunf 10];
sprintf(num"%: ", nunber);
fwite(num strlen(num, 1, stdout);
}
fwite(charBuf, strlen(charBuf), 1, stdout) ;
fflush(stdout);

if (isQuery(charBuf))

{
| ong buf Byt es;
/* Put the query response into the sane buffer as the*/
/* command string appended after the null term nator.*/
buf Byt es = queryl nstrunent (i nst Sock, charBuf,
charBuf + strlen(charBuf) + 1,
I NPUT_BUF_SI ZE -strlen(charBuf));
if (!quiet)
{
fwite(" ", 2, 1, stdout) ;
fwrite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout) ;
fflush(stdout);
}
}
el se
{
conmand! nst runent (i nst Sock, charBuf);
}

i f (nunber) nunber ++;

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 131

Programming Examples
LAN Programming Interface Examples

if (show_errs) {
showEr r or s(i nst Sock) ;

#i f def W NSOCK
cl osesocket (i nst Sock) ;
cl ose_wi nsock();
#el se
cl ose(i nst Sock) ;
#endif /* WNSOCK */

return O;

/* End of lanio.cpp *

[R AR KR KK A kK KK KKK KK KA K KKK KA KA KA KKK KA KKK IR KKK KA KKK KA KR KKK IR KKK KKK A AKX KK [

/* $Function: mainl$ */

/* $Description: Qutput a series of SCPI commands to the signal generator */

/* Send query results to stdout. $ */
/* */
/* $Return: (int) . . . non-zero if an error occurs */
/* */
/**/
/* Renanme this int mainl() function to int main(). Re-conpile and the */
/* execute the program */

[R AR KR KK Kk kKK KKK KK KA KKK KKK KKK KKK KA A KKK IR KKK KA KKK KA KR KKK KKK KKk Ak X KK [

int mainl()

{
SOCKET i nst Sock;

| ong buf Byt es;
char *charBuf = (char *) nalloc(l NPUT_BUF_SI ZE) ;

[HHEF KKK KK KA KKK KKK I I A KKK IR KKK KKK KKK KK h XKk k[

132 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples

LAN Programming Interface Examples

/* open a socket connection to the instrunment*/

[HHEF KKK KK KA KKK IR K IIA KKK IR KKK KKK KKK KA KKK IRk k[

#i f def W NSOCK
if (init_wnsock() !'=0) {
exit(1);
}
#endi f /* WNSOCK */

i nst Sock = openSocket ("xxxxxx", SCPlI_PORT); /* Put your hostnane here */
if (instSock == | NVALI D_SOCKET) {

fprintf(stderr, "Unable to open socket.\n");

return 1;

}

/* fprintf(stderr, "Socket opened.\n"); */

buf Bytes = queryl nstrunent (i nst Sock, "*IDN?\n", charBuf, | NPUT_BUF_SI ZE);
printf("ID %\n", charBuf);

command! nst runent (i nst Sock, "FREQ 2.5 GHz\n");

printf("\n");

buf Byt es = queryl nstrunent (i nst Sock, "FREQ CWP\n", charBuf, | NPUT_BUF_SI ZE);

printf("Frequency: %\n", charBuf);
commandl! nst runent (i nst Sock, "POWAMPL -5 dBm n");

buf Byt es = queryl nstrunent (i nst Sock, "POW AMPL?\n", charBuf, | NPUT_BUF_SI ZE);

printf("Power Level: %\n", charBuf);
printf("\n");

#i f def W NSOCK
cl osesocket (i nst Sock) ;
cl ose_wi nsock();
#el se
cl ose(i nst Sock) ;
#endi f /* WNSOCK */

return O;

}

[R AR R Kk Kk K KK K KK Rk KA K KKK KA KA KR KKK KA KKK I KKK A KR KKK KA KKK IR KA AKX KKK KA KKK x

get opt (30) get opt (3C)

PROGRAM FI LE NAME: getopt.c

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

133

Programming Examples
LAN Programming Interface Examples

getopt - get option letter from argunent vector

SYNOPSI S

int getopt(int argc, char * const argv[], const char *optstring);

extern char *optarg;
extern int optind, opterr, optopt;
PRORGAM DESCRI PTI ON:

getopt returns the next option letter in argv (starting fromargv[1])

that matches a letter in optstring. optstring is a string of

recogni zed option letters; if a letter is followed by a colon, the
be

optarg is set to point to the start

option is expected to have an argunment that may or may not
separated fromit by white space.
of the option argunent on return from getopt.
getopt places in optind the argv index of the next argument to be

processed. The external variable optind is initialized to 1 before

the first call to the function getopt.

When al |

argunent),

options have been processed (i.e.,
returns ECF.

up to the first non-option
The speci al
ECF is returned,

get opt option -- can be used to

delimt the end of the options; and -- is skipped.

KR KKk KK KKK KK KA KKK KR KKK KKK KKK KA K KK F R A K KKK KKK KA KKK KR AR KKK KA KA IR KKKk * kK [

#i nclude <stdio. h>
#i nclude <string. h>

char *optarg;

int optind = O;
static char
int getopt(int argc,
{

char c;

char *posn;

optarg = NULL;

if (scan == NULL ||

*scan =

char * const argv[],

/* NULL, EOF */
/* For strchr() */

For

/* dobal argument pointer. */
/* dobal argv index. */
NULL; /* Private scan pointer. */

const char* optstring)

*scan "\N0") {

134

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

if (optind == 0)

opti nd++;

if (optind >= argc || argv[optind][O] !="'-" || argv[optind][1] == '"\0")
return(EOF);

if (strcnp(argv[optind], "--")==0) {
opti nd++;

return(EOF);

scan = argv[optind] +1;
opti nd++;

Cc = *scan++;

posn = strchr(optstring, c); /* DDP */

if (posn == NULL || ¢ ==":") {
fprintf(stderr, "%: unknown option -%\n", argv[0], c);

return('?');

}
posn++;
if (*posn == ":") {
if (*scan !'="'"\0") {
optarg = scan;
scan = NULL;
} else {
optarg = argv[optind];
opti nd++;
}
}
return(c);

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 135

Programming Examples
LAN Programming Interface Examples

Sockets LAN Programming Using Java

In this example the Java program connects to the signal generator via sockets LAN. This program
requires Java version 1.1 or later be installed on your PC. To run the program perform the following
steps:

1. In the code example below, type in the hostname or IP address of your signal generator. For
example, String instrunentNane = (your signal generator’s hostnane).

2. Copy the program as Scpi SockTest.java and save it in a convenient directory on your
computer. For example save the file to the C:\j dk1l. 3. 0_2\ bi n\j avac directory.

Launch the Command Prompt program on your computer. Click Start > Programs > Command Prompt.

Compile the program. At the command prompt type: j avac Scpi SockTest . j ava.
The directory path for the Java compiler must be specified. For example:
C:\>jdkl. 3.0_02\bi n\javac Scpi SockTest.java

Run the program by typing j ava Scpi SockTest at the command prompt.

Type exit at the command prompt to end the program.

Generating a CW Signal Using Java
The following program example is available on the signal generator Documentation CD-ROM as
javaex. txt.

[R Rk Rk kA kK KK KK KA KK KKK A KA KR KKK KA KKK IR KA KKK KR KKK KK IR KA A KKK KKK h Kk x

/| PROGRAM NAME: | avaex. t xt // Sanple java
programto talk to the signal generator via SCPl-over-sockets

/1 This programrequires Java version 1.1 or later.

/1 Save this code as Scpi SockTest.]java

/1 Conpile by typing: javac Scpi SockTest.]java

/1 Run by typing: java Scpi SockTest

/1 The signal generator is set for 1 GHz and queried for its id string

[] FFE KRk kk ok ok ok kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkkkkkkkkk

inmport java.io.*;
import java.net.*;
cl ass Scpi SockTest
{

public static void main(String[] args)

{

String instrument Nane = "xxxxx"; /1 Put instrument hostnane here
try
{

Socket t = new Socket (i nstrunent Nane, 5025); // Connect to instrument
/1 Setup read/wite nechani sm
Buf feredWiter out =

new Buf feredWiter(

136 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

new Qut put StreanWiter(t.getQutputStrean()));

Buf f eredReader in =

new Buf f er edReader (

new | nput StreanReader (t. getlnputStream()));
Systemout.println("Setting frequency to 1 GHz...");

out.wite("freq 1GHz\n"); /1 Sets frequency

out. flush();

Systemout.println("Witing for source to settle...");
out.wite("*opc?\n"); /1 Waits for conpletion
out. flush();

String opcResponse = in.readLine();
if (!opcResponse. equal s("1"))
{
Systemerr.println("Invalid response to '*0OPC?' I");
Systemexit(1);

}

Systemout.println("Retrieving instrument ID...");

out.wite("*idn?\n"); /1 Querys the id string

out. flush();

String i dnResponse = in.readLine(); /1 Reads the id string
/1l Prints the id string

Systemout.println("Instrument ID: " + idnResponse);

}

catch (1 OException e)

{

Systemout.printin("Error" + e);

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 137

Programming Examples
LAN Programming Interface Examples

Sockets LAN Programming Using PERL

This example uses PERL script to control the signal generator over the sockets LAN interface. The
signal generator frequency is set to 1 GHz, queried for operation complete and then queried for it’s
identify string. This example was developed using PERL version 5.6.0 and requires a PERL version
with the 10::Socket library.

1. In the code below, enter your signal generator’s hostname in place of the XXxXX in the code line:
ny $i nstrunment Name= “xxxxx”;

Save the code listed below using the filename | anperl .

3. Run the program by typing perl| |anperl at the UNIX term window prompt.

Setting the Power Level and Sending Queries Using PERL

The following program example is available on the signal generator Documentation CD-ROM as
perl.txt.

#1/ usr/ bin/perl

PROGRAM NAME: perl . txt

Exanple of talking to the signal generator via SCPl-over-sockets

#

use 1O : Socket ;

Change to your instrument's hostnane

ny $instrument Name = "xxxxx";

Get socket

$sock = new | O : Socket:: I NET (Peer Addr => $instrunent Nane,
Peer Port => 5025,
Proto => 'tcp',
)

di e "Socket Could not be created, Reason: $!'\n" unless $sock;

Set freq
print "Setting frequency...\n";
print $sock "freq 1 GHz\n";

Wait for conpletion

print "Waiting for source to settle...\n";

print $sock "*opc?\n";

ny $response = <$sock>;

chonmp $response; # Renpves new i ne fromresponse
if ($response ne "1")

{

die "Bad response to '*OPC?" frominstrunent!\n";

138 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

Send identification query
print $sock "*IDN?\n";
$response = <$sock>;

chonmp $response;

print "Instrument 1D $response\n”;

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 139

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG/E8663B Only)

RS-232 Programming Interface Examples (ESG/PSG/E8663B Only)

¢ “Interface Check Using HP BASIC” on page 140

¢ “Interface Check Using VISA and C” on page 141

¢ “Queries Using HP Basic and RS-232” on page 143

¢ “Queries for RS-232 Using VISA and C” on page 144

Before Using the Examples

Before using the examples: On the signal generator select the following settings:

¢ Baud Rate - 9600 must match computer’s baud rate
¢ RS-232 Echo - Off

NOTE For LAN programming examples, refer to “LAN Programming Interface Examples” on
page 108.

Interface Check Using HP BASIC

This example program causes the signal generator to perform an instrument reset. The SCPI
command * RST will place the signal generator into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used is
COM1 (Serial A on some computers). Refer to “Using RS-232 (ESG, PSG, and E8663B Only)” on
page 48 for more information.

’

Watch for the signal generator’s Listen annunciator (L) and the ‘remote preset...” message on the
front panel display. If there is no indication, check that the RS-232 cable is properly connected to
the computer serial port and that the manual setup listed above is correct.

If the compiler displays an error message, or the program hangs, it is possible that the program was
typed incorrectly. Press the signal generator’s Reset RS-232 softkey and re-run the program. Refer to
“If You Have Problems” on page 53 for more help.

The following program example is available on the signal generator’s Documentation CD-ROM as
rs232exl1.txt.

10 PR R R KRR R R KRR KR KRR kKRR R KRR KR KRR KRR K R R KR K R R KR K R Kk
20 !

30 ! PROGRAM NAME: rs232ex1. t xt

40 !

50 ! PROGRAM DESCRI PTION: This program verifies that the RS-232 connections and
60 ! interface are functional.

70 !

80 I Connect the UNI X workstation to the signal generator using an RS-232 cable
90 !

100 !

110 ! Run HP BASIC, type in the follow ng commands and then RUN the program

120 !

140 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG/E8663B Only)

130 !

TAQ I RA ARk Rk Ak k kR kA kK kR ok kR kR Rk kR kR kR kR kR Rk kR kR kR Rk kR
150 !

160 I NTEGER Num

170 CONTROL 9, 0; 1 ! Resets the RS-232 interface

180 CONTROL 9, 3; 9600 ! Sets the baud rate to match the sig gen
190 STATUS 9, 4; St at ! Reads the value of register 4

200 NunvBI NAND(Stat, 7) ! Gets the AND val ue

210 CONTROL 9, 4; Num | Sets parity to NONE

220 QUTPUT 9; "*RST" ! Qutputs reset to the sig gen

230 END ! End the program

Interface Check Using VISA and C

This program uses VISA library functions to communicate with the signal generator. The program
verifies that the RS-232 connections and interface are functional. In this example the COM2 port is
used. The serial port is referred to in the VISA library as ‘ASRL1’ or ‘ASRL2’ depending on the
computer serial port you are using. Launch Microsoft Visual C++, add the required files, and enter
the following code into the .cpp source file. r s232ex1. cpp performs the following functions:

¢ prompts the user to set the power on the signal generator to 0 dBm
¢ error checking
* resets the signal generator to power level of -135 dBm

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex1. cpp.

[Rk R kKR R R R KRk kKR KKK KR KKK kR KRRk KR KRR KRR KR K R R KRk R R KK K
/1 PROGRAM NAME: rs232ex1. cpp

11

/1 PROGRAM DESCRI PTI ON: This code exanpl e uses the RS-232 serial interface to
/1 control the signal generator.

11

/1 Connect the conputer to the signal generator using an RS-232 serial cable.
/1 The user is asked to set the signal generator for a 0 dBm power |evel

/1 A reset command *RST is sent to the signal generator via the RS-232

/Il interface and the power level will reset to the -135 dBm | evel.The default
/1 attributes e.g. 9600 baud, no parity, 8 data bits,1 stop bit are used.

/1 These attributes can be changed using VI SA functions.

11

/1 1 MPORTANT: Set the signal generator BAUD rate to 9600 for this test

[] RF KKKk k ok ok ok k ok ok kk kK kkkkkkk ok kk ok kkkkk Kk ok kkkkkkkkkkkkkkkhhkkhkkkkkkkkkhkkhhkkkkkkkkkkkkkk kK Kk

#i ncl ude <visa. h>
#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i nclude <stdlib. h>

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 141

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG/E8663B Only)

#i ncl ude <coni o. h>

void main ()

{

int baud=9600;// Set baud rate to 9600
printf("Manually set the signal generator power level to O dBmn");
printf("\n");
printf("Press any key to continue\n");
getch();
printf("\n");
Vi Session defaul tRM vi;// Declares a variable of type ViSession
/1 for instrument communication on COM 2 port
Vi Status vi Status = 0;
/| Opens session to RS-232 device at serial port 2
vi St at us=vi OpenDef aul t RM &def aul t RM ;
vi St at us=vi Open(defaul tRM "ASRL2::INSTR', VI_NULL, VI_NULL, &vi);

if(viStatus){// |f operation fails, pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}
/1 initialize device
vi St at us=vi Enabl eEvent (vi, VI_EVENT_I O COVWPLETI ON, VI _QUEUE, VI _NULL);

viCear(vi);// Sends device clear command

/1 Set attributes for the session

vi Set Attribute(vi,VI_ATTR_ASRL_BAUD, baud) ;
vi Set Attribute(vi, VI_ATTR_ASRL_DATA BI TS, 8);

viPrintf(vi, "*RST\n");// Resets the signal generator
printf("The signal generator has been reset\n");
printf("Power |evel should be -135 dBmn");
printf("\n");// Prints new line character to the display
vi Close(vi);// C oses session

vi Cl ose(defaul tRM;// O oses default session

}

142 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Queries Using HP Basic and RS-232

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG/E8663B Only)

This example program demonstrates signal generator query commands over RS-232. Query commands

are of the type *|I DN? and are identified by the question mark that follows the mnemonic.

rs232ex2.t xt performs the following functions:
¢ resets the RS-232 interface

¢ sets the baud rate to match the signal generator rate

¢ reads the value of register 4
* queries the signal generator ID
¢ sets and queries the power level

Start HP Basic, type in the following commands, and then RUN the program:

The following program example is available on the signal generator Documentation CD-ROM as

rs232ex2.txt.

10 R T T
20 !

30 I PROGRAM NAME: rs232ex2. txt

40 !

50 ! PROGRAM DESCRIPTION: In this exanple, query commands are used to read

60 ! data fromthe signal generator.

70 !

80 ! Start HP Basic, type in the follow ng code and then RUN the program

90 !

OO0 I HA ARk Rk Ak k kR ok ko kR kR k kK kR kR Rk kR kR Rk kR kR kR Rk Rk K Rk
110 !

120 I NTEGER Num

130 DI M Str$[200], Stri1$[20]

140 CONTROL 9, 0; 1 | Resets the RS-232 interface

150 CONTROL 9, 3; 9600 ! Sets the baud rate to match signal generator rate
160 STATUS 9, 4; St at ! Reads the value of register 4

170 NunvBI NAND(St at , 7) ! Gets the AND val ue

180 CONTROL 9, 4; Num ! Sets the parity to NONE

190 QUTPUT 9; "*| DN?" ! Querys the sig gen ID

200 ENTER 9; Str$! Reads the ID

210 VWAIT 2 I Waits 2 seconds

220 PRINT "ID =",Str$! Prints IDto the screen

230 QUTPUT 9; "PON AWPL -5 dbni ! Sets the the power level to -5 dbm

240 QUTPUT 9; " PONP" ! Querys the power |evel of the sig gen

250 ENTER 9; Str1$! Reads the queried val ue

260 PRI NT "Power = ", Stril$! Prints the power |level to the screen

270 END ! End the program

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

143

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG/E8663B Only)

Queries for RS-232 Using VISA and C

This example uses VISA library functions to communicate with the signal generator. The program
verifies that the RS-232 connections and interface are functional. Launch Microsoft Visual C++, add
the required files, and enter the following code into your .cpp source file. r s232ex2. cpp performs
the following functions:

¢ error checking

* reads the signal generator response

¢ flushes the read buffer

¢ queries the signal generator for power
* reads the signal generator power

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex2. cpp.

//**
11

/| PROGRAM NAME: rs232ex2. cpp

11

/| PROGRAM DESCRI PTI ON: This code exanple uses the RS-232 serial interface to contro
/'l the signal generator.

11

/1 Connect the conputer to the signal generator using the RS-232 serial cable

/1 and enter the followi ng code into the project .cpp source file

/1 The program queries the signal generator ID string and sets and queries the power

Il level. Query results are printed to the screen. The default attributes e.g. 9600 baud
|/ parity, 8 data bits,1 stop bit are used. These attributes can be changed using VI SA
/1 functions.

11

/1 | MPORTANT: Set the signal generator BAUD rate to 9600 for this test

[R R K Rk K kK KK R K KA KK KKK Ak A A KR K KKK KA KKK I KA KKK KR KKK KA KKK IR KA KKK KR A KKK IR KK A KK XKk * K

#i ncl ude <visa. h>

#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#include <stdlib. h>
#i ncl ude <coni o. h>

#def i ne MAX_COUNT 200

int main (void)

{

Vi Statusstatus; // Declares a type ViStatus variable

144 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG/E8663B Only)

Vi Sessi ondefaul tRM instr;// Declares type Vi Session variabl es
ViU nt32retCount; // Return count for string I/O
Vi Char buf fer [MAX_COUNT] ; // Buffer for string I/ O

status = vi OpenDefaul tRM &efaul tRM;// Initializes the system
// Open conmunication with Serial Port 2
status = vi Open(defaul tRM "ASRL2::|NSTR', VI_NULL, VI _NULL, & nstr);

if(status){// If problens, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}
/1 Set timeout for 5 seconds
vi Set Attribute(instr, VI_ATTR_ TMO VALUE, 5000);
/'l Asks for sig gen ID string
status = viWite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

/! Reads the sig gen response

status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);
buffer[retCount]= "\0";// Indicates the end of the string
printf("Signal Generator ID: "); // Prints header for ID
printf(buffer);// Prints the ID string to the screen
printf("\n");// Prints carriage return

/1 Flush the read buffer

/1l Sets sig gen power to -5dbm

status = viWite(instr, (ViBuf)"PONAWL -5dbmn", 15, &retCount);
/'l Querys the sig gen for power |evel

status = viWite(instr, (ViBuf)"PON\n",5, & etCount);

/'l Read the power |evel

status = vi Read(instr, (ViBuf)buffer, MAX COUNT, &retCount);
buffer[retCount]= "\0";// Indicates the end of the string
printf("Power level = ");// Prints header to the screen
printf(buffer);// Prints the queried power |evel
printf("\n");

status = viC ose(instr);// C ose down the system

status = vi Cl ose(defaul tRV;

return O;

}

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 145

Programming Examples
RS-232 Programming Interface Examples (ESG/PSG/E8663B Only)

146 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

4 Programming the Status Register System

This chapter provides the following major sections:

“Overview” on page 148

“Status Register Bit Values” on page 157

“Accessing Status Register Information” on page 158
“Status Byte Group” on page 163

“Status Groups” on page 165

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

147

Programming the Status Register System
Overview

Overview

NOTE Some of the status bits and register groups only apply to select signal generators with
certain options. For more specific information on each exception, refer to the following:

¢ Standard Operation Condition Register bits (see Table 4-5 on page 169)

¢ Baseband Operation Status Group (see page 171)

¢ Data Questionable Condition Register bits (see Table 4-7 on page 175)

* Data Questionable Power Condition Register bits (see Table 4-8 on page 178)

¢ Data Questionable Frequency Condition Register bits (see Table 4-9 on page 181)

* Data Questionable Modulation Condition Register bits (see Table 4-10 on page 184)
* Data Questionable Calibration Condition Register bit (see Table 4-11 on page 187)
¢ Data Questionable Bert Status Group (see page 189)

During remote operation, you may need to monitor the status of the signal generator for error
conditions or status changes. For more information on using the signal generator’s SCPI commands to
query the signal generator’s error queue, refer to signal generator’s SCPI command reference guide,
to see if any errors have occurred. An alternative method uses the signal generator’s status register
system to monitor error conditions, or condition changes, or both.

The signal generator’s status register system provides two major advantages:

* You can monitor the settling of the signal generator using the settling bit of the Standard
Operation Status Group’s condition register.

* You can use the service request (SRQ) interrupt technique to avoid status polling, therefore giving
a speed advantage.

The signal generator’s instrument status system provides complete SCPI Standard data structures for
reporting instrument status using the register model.

The SCPI register model of the status system has multiple registers that are arranged in a
hierarchical order. The lower-priority status registers propagate their data to the higher- priority
registers using summary bits. The Status Byte Register is at the top of the hierarchy and contains the
status information for lower level registers. The lower level registers monitor specific events or
conditions.

The lower level status registers are grouped according to their functionality. For example, the Data
Quest. Frequency Status Group consists of five registers. This chapter may refer to a group as a
register so that the cumbersome correct description is avoided. For example, the Standard Operation
Status Group’s Condition Register can be referred to as the Standard Operation Status register. Refer
to “Status Groups” on page 165 for more information.

Figure 4-1, Figure 4-2, Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6, Figure 4-7, and Figure 4-8
shows each signal generator model’s status byte register system and hierarchy.
The status register systems use IEEE 488.2 commands (those beginning with *) to access the

higher-level summary registers (refer to the SCPI Reference). Access Lower-level registers by using
STATus commands.

148 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System

Overview
Figure 4-1 N5181A/82A: Overall Status Byte Register System (1 of 2)
Data Questionable Power Status Group
R.P.P. Tripped g
Unleveledd 1
Unused _| 2
Unused _] 3 = .
ALC Heater g R P -
Detector (Cold) -] 4 2(8|S]S
Unused— 5 Pl el el 2
Unused— 6 (1) Pl 3-0/‘\ .
Unused 7 slslsk o \-!-/ To Data Questionable Status Group #3
Unused—| 8 = |- = EH=
. —~—~|2 [
Hnuseg a 18 slelein o To Data Questionable Status Group #5
nuse 3 5
Unused 411
Unused 412
Unused 413
Unused 414
Always Zero (0) 4 15]
Data Quest. Frequency Status Group
Synth. Unlocked 4 0
10 MHz Ref Unlocked - 1
Unused 4 2
Unused o 3
Unused - 4 sl |12
Unused o 5 Z12]2 % v
Unused - ¢ & % % -g,%
Unused o 7 H I A g@—
Unused - 8 22| 8]
Unused o 9 E E Elefe
Il |e
Unused —{10 8 2
Unused 11
Unused 12
Unused {13
Unused -{14
Always Zero (0) {15
S
149

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System

Overview
Figure 4-2 N5181A/82A: Overall Status Byte Register System (2 of 2)
Status Byte Register
Unused| 0
Unused] 1
From Data Questionable Power Status Group Error/Event Queue Summary Bit] 2
Data Questionable Status Summary Bit] 3
From Data Quest. Frequency Status Group Data Questionable Message Available (MAV)]| 4
1
Status Group Std. Event Status Sum. Bit] 5 |—
Unused— o Req. Serv. Sum. Bit (RQS)| & =
11
Unused — 1 Std. Operation Status Sum. Bit[7 |- |
Unused—- o 1
1
(summary)— 3 1
Unused— 4 :
o of ||| +------ 4
(summary)— 5 |5 |z [® :
Unused— & 3 il R e !
A !
Unused— 7 clc|c |z |8 + !
2|E |8 [|w !
Unused —| 8 ElE=|=]s 2 1
cl+ |)z |lo !
SELFtest—] 9 S [= > 1
]])
Unused— 10 |
Unused — 11 :
Unused — 12 :
Unused—{ 13 :
Unused — 14 :
Always Zero (0)— 15]
L~ | |
|
Standard Event Status Group !
Oper. Complete 4 0 R |
Req. Bus Control o{ 1 2 !
ol y !
Query Error o 2 Bl !
Dev. Dep. Error 4 3 rsy :
Execution Error o 4 x 2 1
Command Error o 5 & % :
User Request - 6 | @ 1
Power On o 7 w :
|
Standard Operation Status Group |
— |
1/Q CALibrating— 0 :
Settling— 1 |
Unused— 2 :)’
SWEeping— 3 : p &,
Unused —{ 4 = . :)
" 2] [| |® I (&
Waiting for TRIGer— 5 210 |10 |9)
DEER[y 1 (
Unused - 6 SEE ol
o |w o2 f&
Unused < 7 sIslsEle
1018|812 2
Unused— 8 -5',:',:3*5
Unused—| 9 S
@] h
Unused — 10 @
Sweep Calculating— 11 L)
Unused— 12 716] 5] 4] 3]2]1]0
Unused— 13
Unused—| 14 Service Request

Always Zero (0)— 15 | Enable Register

150 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Figure 4-3 E8663B: Overall Status Byte Register System (1 of 2)

Data Questionable Power Status Group

R.P.P. Tripped
Unleveled -
Unused
Unused -
Unused -
Unused o
Unused 4

o)
Unused d_'/
Unused —

Unused

(+)Trans Filter

(-)Trans Filter

Event Register
Event Enable Reg.

Unused
Unused -
Unused 412

Condition Register

Unused 413
Unused {14
Always Zero (0) 415

=
200N WN-=20O

Data Quest. Fretﬂency Status Group

Synth. Unlocked —
10 MHz Ref Unlocked —
1 GHz Ref Unlocked —

Unused - 14
Always Zero (0) 415

Data Quest. Modulation Status Group

Mod 1 Undermod —
Mod 1 Overmod
Mod 2 Undermod
Mod 2 Overmod
Modulation Uncalibrated —
Unused o

Unused —

Unused —

Unused —

Unused -

Unused -

Unused -

Unused 412

Unused 413

Unused o 14

Always Zero (0) 4 15]

Data Quest. Calibration Status Group

0
1
2
Unused o 3
Unused o 4 sl [_I.[p
Sampler Loop Unlocked o 5 2|22 |8 [x
YO Loop Unlocked - 6 K] (i i =y
Unused 4 7 ng&g@—
Unused o 8 O8]
Unused 4 9 ‘é"}"_‘“gg
Unused 10 8“’“’“"@
Unused -1 11
Unused 12
Unused {13

@_

Condition Register
(+)Trans Filter
(-)Trans Filter
Event Register
Event Enable Reg.

g
2O O0O~NOOBWN—=0O

DCFM/DCOM —
Zero Failure-| O
Unused o 1
Unused 9 2
Unused 4 3 by o)
Unused - 4 _‘@66@}&
Unused | 5 gﬁﬁﬂo
Unused - 6 mww%%
et § 15 B E(D——
Unused | 9 E"}"_TSE
Unused 910 SVV”JIII
Unused 411
Unused 412
Unused {13
Unused 414
Always Zero (0) 415

Programming the Status Register System
Overview

To Data Questionable Status Group #3

To Data Questionable Status Group #5

To Data Questionable Status Group #7

To Data Questionable Status Group #8

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

151

Programming the Status Register System
Overview

Figure 4-4 E8663B: Overall Status Byte Register System (2 of 2)

Status Byte Register
Unused| 0

Unused

Error/Event Queue Summary Bit

From Data Questionable Power Status Group

Data Questionable Status Summary Bit

From Data Quest. Frequency Status Group Data Questionable Message Available (MAV)
'
Status Group Std. Event Status Sum. Bit

Unused —

From Data Quest. Modulation Status Group Req. Serv. Sum. Bit (RQS)
11

Std. Operation Status Sum. Bit

~NjJojoldlelNn]=

Unused —
From Data Quest. Calibration Status Group Unused -

(summary) —

TEMPerature _|
(OVEN COLD)

(summary)—
Unused —
(summary)—

|
[|

(summary)—
SELFtest —|
Unused — 10
Unused — 11
Unused — 12
Unused — 13
Unused — 14

Always Zero (0)— 15

(-)Trans Filter
Event Register
Event Enable Reg.

Condition Register
(+)Trans Filter

W 0 ~N O O K 0N =

Standard Event Status Group
Oper. Complete
Regq. Bus Control
Query Error
Dev. Dep. Error
Execution Error
Command Error
User Request
Power On

M
Ll
By
s
mC
5%
HE
LLI>
[N}

1
|\I®U'|J>(.0I\)—\O

Standard Op.

Unused —

(1]
=

ation Status Group

Settling —

Unused —
SWEeping —
Unused —

Waiting for TRIGer —
Unused —

Unused —
Unused

DCFM/DCOM _|
Nullin Progress
Unused— 10

LOOO\I@UW-&(.OI\)—\O|

(+)Trans Filter
(-)Trans Filter
Event Register
Event Enable Reg.
~ (o)
o
o %
b Qo\
P Ry
N Qo\
- 20)
S)

Sweep Calculating— 11
BERT SYNChronizing— 12
Unused— 13

Unused— 14
Always Zero (0)—{ 15

Service Request
Enable Register

152 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Overview

Figure 4-5 E4428C/38C: Overall Status Byte Register System (1 of 2)

Data Questionabl_e Power Status Group

R.P.P. Tripped o
Unleveled o

1Q Mod Overdrive —
Lowband Detector Fault—
Unused o

Unused

Unused o

o\
Unused — \'l_'/
Unused —

Unused

To Data Questionable Status Group #3

(+)Trans Filter

(-)Trans Filter

Event Register
EventEnable Reg.

Unused o
Unused o
Unused 412

Condition Register

To Data Questionable Status Group #5

Unused 413
Unused 414
Always Zero (0) 415

gy
200N WN 2O

To Data Questionable Status Group #7

Data Quest. Frequency Status Group

Synth. Unlocked
10 MHz Ref Unlocked —
1 GHz Ref Unlocked —

Unused 13
Unused {14
Always Zero (0) 415

Data Quest. Modulation Status Group

Mod 1 Undermod 4 0

Mod 1 Overmod 4 1

Mod 2 Undermod 4 2

Mod 2 Overmod 4 3
Modulation Uncalibrated | 4
5
6
7
8

0

1

2

Baseband 1 Unlocked o 3
Unused - 4 el 1|13
Sampler Loop Unlocked o 5 22|28 |z
YO Loop Unlocked - 6 K [o =t

Unused o 7 4 AR g@—

Unused < 8 Kol il poa o
Unused - 9 EE'%S‘%
Unused —10 8"“’“"@

Unused 11

Unused 12

Unused -
Unused —
Unused -
Unused
Unused 4 9
Unused {10
Unused {11
Unused 412
Unused 413
Unused {14
Always Zero (0) {15]

Data Quest. Calibration Status Group

@_

(-)Trans Filter
Event Register
Event Enable Reg.

Condition Register
(+)Trans Filter

W

DCFM/DCIM ——
Zero Failure-{ O
I/QCalibration Failure o 1
Unused - 2
Unused 4 3 oy o
Unused - 4 ® |5 |o § &
Unused o 5 %E E 2o
Unused - 6 [0 Pl g%
unused | 75 & |8 € £ (1) ——
nused - = =
Unused - 9 2 "E ": 212
Unused =110 vam@
Unused -{11
Unused <12
Unused 13
Unused -{14

Always Zero (0) {15

To Data Questionable Status Group #8

To Data Questionable Status Group #12

To, Standard Operation Status Group #10

Data Quest. BERT S

(Option UN7 & 300 only)

No Clock

No Data Change —
PRBS Sync Loss
Unused <

Unused —

Unused

Unused —

Unused —

Unused o

Unused o

Unused —

Downconv./Demod Out of Lock —

Demod DSP Ampl Out of Range —

Sync. to BCH/TCH/PDCH —
Waiting for TCH/PDCH —

Always Zero (0) 15|
Baseband Operation Status Group

(Option 001/601
Baseband 1 Busy —
Baseband 1 Communicating —
Unused —

Unused —

Unused —

Unused —

Unused —

Unused -

Unused

Unused —

Unused —

Unused —

Unused —

Unused -

Unused —

tatus Group

WRE~NOOEREWN=O

W

(-)Trans Filter
Event Register
Event Enable Reg.

(+)Trans Filter

10
1
12

13
14

Condition Register

and 002/602)

8 OO WN=O
(-)Trans Filter
Event Register

Event Enable Reg.

Condition Register
(+)Trans Filter

11
12
13
14

Always Zero (0) 4

W

9]

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

153

Programming the Status Register System

Overview
Figure 4-6 E4428C/38C: Overall Status Byte Register System (2 of 2)
Status Byte Register
Unused| o
Unused| 1

Error/Event Queue Summary Bit

From Data Questionable Power Status Group

Data Questionable Status Summary Bit

From Data Quest. Frequency Status Group Data Questionable Message Available (MAV)
'
Status Group Std. Event Status Sum. Bit

Unused —

From Data Quest. Modulation Status Group Req. Serv. Sum. Bit (RQS)
11

Std. Operation Status Sum. Bit

~Njojaldlo]l

Unused —
From Data Quest. Calibration Status Group Unused -

(summary) —

TEMPerature_|
(OVEN COLD)

(summary)—

Unused —
(summary)—
From Baseband Operation Status Group — (summary)—

From Data Quest BERT Status Group

|
[|

(+)Trans Filter

(-)Trans Filter

Event Register
Event Enable Reg.

SELFtest
Unused— 10
Unused — 11

(summary)— 12
Unused—13
Unused—] 14

Always Zero (0)— 15

Condition Register

© O N O O 0N =2 O

Standard Event Status Group
Oper. Complete
Regq. Bus Control -
Query Error -
Dev. Dep. Error
Execution Error —
Command Error —
User Request -
Power On —

5
Ll
By
s
mC
5%
HiE
LLI>
[N}

|\IO)0'|J>CA)I\)—‘O

Standard Operation Status Group
1/Q CALibrating—|

Unused—{ 13

Unused— 14
Always Zero (0)— 15

Service Request
Enable Register

0
Settling— 1
Unused - o)7
SWEeping— 3 P &83
MEASuring— 4 _ . DL
o = {
Waiting for TRIGer o 5 % |G |3 |8 |¢ P 8
o= = |8
Unused — St | o]
nuse: 6 v % % gg Q f&
Unused - 7 HEE A
1SS | |2 |w
Unused - g == =[5 |2 &
DCFMDCM | ¢ slElela|e
Nullin Progress O (]
Baseband is Busy— 10 @
Sweep Calculating— 11 L)
BERT SYNChronizing—{ 12 716]15]4]3]2]1|0

154 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Overview

Figure 4-7 E8257D/67D: Overall Status Byte Register System (1 of 2)

Data Questionable Power Status Group

R.P.P. Tripped
Unleveled -
Unused H
Unused -
Unused
Unused —
Unused 4
Unused 4
Unused —
Unused
Unused
Unused -
Unused —
Unused 413
Unused {14
Always Zero (0) 15

Data Quest. Fretﬂency Status Group

Synth. Unlocked —

10 MHz Ref Unlocked —
1 GHz Ref Unlocked —
Baseband 1 Unlocked —
Unused <

Sampler Loop Unlocked —
YO Loop Unlocked —
Unused

Unused

Unused —

Unused —

Unused -

Unused -

Unused -

Unused {14

Always Zero (0) —E .
Data Quest. Modulation Status Group ?Easszesl;agdog)t?gr:aébglnoftgégsoﬁllﬁu P

\-I_-/ To Data Questionable Status Group #3

(+)Trans Filter

(-)Trans Filter

Event Register
Event Enable Reg.

To Data Questionable Status Group #5

Condition Register

To Data Questionable Status Group #7

[
N=2OORNODUBWN=O

To Data Questionable Status Group #8

To, Standard Operation Status Group #10

C_D_

(-)Trans Filter
Event Register
Event Enable Reg.

Condition Register
(+)Trans Filter

WN =20 0N LWN—=O

W

Mod 1 Undermod 4 0 Baseband 1 Busy -|{ O
Mod 1 Overmod 4 1 Baseband 1 Communicating o 1
Mod 2 Undermod 4 2 Unused - 2
Mod 2 Overmod 4 3 o) o Unused o 3 o 5
M . loelwl=|o 3 o)
Modulation Uncalibrated -{ 4 _% S(s % "4 Unused - 4 % |5 [5]8|S
Unused o 5 Bl |T|E]e Unused - 5 PEE2 o
Unused o 6 fgg&%@— Unused -{ 6 AN A
Unused o 7 ols|sl<|g Unused | 7 515 |5[% g:+)
Unused | 8 == = Unused - 8 = S e
i1 = = kA B =™
Unused - 9 0 Unused o 9 o - [—~|2 |2
S| =~ |wL|2 SE (el |e
Unused 410 o fi] Unused {10 3 3
Unused —11 Unused 411
Unused 412 Unused —12
Unused 413 Unused 413
Unused 414 Unused {14
Always Zero (0) {15} Always Zero (0) -{15]

Data Quest. Calibration Status Group

DCFM/DCOM —
Zero Failure— 0O
I/QCalibration Failure o 1
Unused - 2
Unused 4 3 o o
Unused 4 4 2|5 |5|8 (S
Unused 4 5 %E E 2o
Unused 4 6 (o2 1l s g%
unused | e |8 €8 () ———
nused - == =S 2
Unused - 9 EHala S
Unused 410 8“"'”"@
Unused 411
Unused 12
Unused 13
Unused 414
Always Zero (0) 415

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 155

Programming the Status Register System

Overview
Figure 4-8 E8257D/67D: Overall Status Byte Register System (2 of 2)
Status Byte Register
Unused| 0
Unused] 1
From Data Questionable Power Status Group Error/Event Queue Summary Bit| 2
Data Questionable Status Summary Bit] 3
From Data Quest. Frequency Status Group Data Questionable Message Available (MAV)]| 4
1
Status Group Std. Event Status Sum. Bit| 5 |—
From Data Quest. Modulation Status Group Unused— g Req. Serv. Sum. Bit (RQS)| & M=
11
Unused— 1 Std. Operation Status Sum. Bit] 7 |+ '
From Data Quest. Calibration Status Group Unused o I
(summary)— 3 :
TEMPerature _| !
(OVEN COLD) | 4 = of | oo K
(summary)— 5 B 5|58 (S :
Unused— 6 E’E - g% !
(summary)— 7 2|2k |s(+ |
From Baseband Operation Status Group —— (summary)— 8 E E E § % i
SELFtest—| 9 S[E|m (@ i
O] h
Unused — 10 |
Unused — 11 :
Unused — 12 '
Unused— 13 :
Unused — 14 :
Always Zero (0)— 15 1
— !
!
Standard Event Status Group !
Oper. Complete 4 0] 1
Req. Bus Control o{ 1 5| 8 '
Query Error 4 2 B % 1
Dev. Dep. Error H{ 3 e} :
Execution Error 4 4 95 g 1
Command Error o 5 S @ :
User Request - 6 il 2 !
Power On - 7 iT] :
!
Standard Operation Status Group '
] !
1/Q CALibrating— 0 1
!
Settling— 1 1
Unused— 2 ')7
SWEeping— 3 : P &
MEASuring - 4 _ - :
. © |9) f&
Waiting for TRIGer - 5 6|5 (3|8 P 1
SEER|o 1 &
Unused — 6 CE Lol
[0 [V KON f&
Unused 7 sIslSE s
18 (8 [z |
Unused— g EEE 5 = &
pcrmocom | o skl
Null in Progress o W11
Baseband is Busy— 10 @
Sweep Calculating— 11)
Unused— 12 716]15]413]2]1]0
Unused— 13
Unused— 14 Service Request

Always Zero (0)— 15 | Enable Register

156 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Register Bit Values

Status Register Bit Values

Each bit in a register is represented by a decimal value based on its location in the register (see
Table 4-1).

¢ To enable a particular bit in a register, send its value with the SCPI command. Refer to the signal
generator’s SCPI command listing for more information.

¢ To enable more than one bit, send the sum of all the bits that you want to enable.

¢ To verify the bits set in a register, query the register.

Example: Enable a Register

To enable bit 0 and bit 6 of the Standard Event Status Group’s Event Register:

1. Add the decimal value of bit O (1) and the decimal value of bit 6 (64) to give a decimal value of
65.

2. Send the sum with the command: *ESE 65.

Example: Query a Register
To query a register for a condition, send a SCPI query command. For example, if you want to query
the Standard Operation Status Group’s Condition Register, send the command:

STATus:OPERation:CONDition?

If bit 7, bit 3 and bit 2 in this register are set (bits = 1) then the query will return the decimal value
140. The value represents the decimal values of bit 7, bit 3 and bit 2: 128 + 8 + 4 = 140.

Table 4-1 Status Register Bit Decimal Values

(=) < [\ © R < [a\} NeJ R <t [N © [ee) <t [a\] —
. . (2 |2 |2 |2 |8 |2|8|8|2|% |~
Decimal S) © < N —
Value 2 —
<
Bit Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOTE Bit 15 is not used and is always set to zero.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 157

Programming the Status Register System
Accessing Status Register Information

Accessing Status Register Information

1. Determine which register contains the bit that reports the condition. Refer to Figure 4-1 on
page 149 through Figure 4-8 on page 156 for register location and names.

2. Send the unique SCPI query that reads that register.

3. Examine the bit to see if the condition has changed.

Determining What to Monitor

You can monitor the following conditions:

e current signal generator hardware and firmware status
¢ whether a particular condition (bit) has occurred

Monitoring Current Signal Generator Hardware and Firmware Status

To monitor the signal generator’s operating status, you can query the condition registers. These
registers represent the current state of the signal generator and are updated in real time. When the
condition monitored by a particular bit becomes true, the bit sets to 1. When the condition becomes
false, the bit resets to 0.

Monitoring Whether a Condition (Bit) has Changed

The transition registers determine which bit transition (condition change) should be recorded as an
event. The transitions can be positive to negative, negative to positive, or both. To monitor a certain
condition, enable the bit associated with the condition in the associated positive and negative
registers.

Once you have enabled a bit via the transition registers, the signal generator monitors it for a change
in its condition. If this change in condition occurs, the corresponding bit in the event register will be
set to 1. When a bit becomes true (set to 1) in the event register, it stays set until the event register
is read or is cleared. You can thus query the event register for a condition even if that condition no
longer exists.

To clear the event register, query its contents or send the *CLS command, which clears all event
registers.

Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitors it for a change in its condition. The transition
registers are preset to register positive transitions (a change going from 0 to 1). This can be changed
so the selected bit is detected if it goes from true to false (negative transition), or if either transition
occurs.

Deciding How to Monitor

You can use either of two methods described below to access the information in status registers (both
methods allow you to monitor one or more conditions).

¢ The polling method

In the polling method, the signal generator has a passive role. It tells the controller that
conditions have changed only when the controller asks the right question. This is accomplished by
a program loop that continually sends a query.

158 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Accessing Status Register Information

The polling method works well if you do not need to know about changes the moment they occur.
Use polling in the following situations:

— when you use a programming language/development environment or IO interface that does not
support SRQ interrupts

— when you want to write a simple, single-purpose program and don’t want the added
complexity of setting up an SRQ handler

¢ The service request (SRQ) method

In the SRQ method (described in the following section), the signal generator takes a more active
role. It tells the controller when there has been a condition change without the controller asking.
Use the SRQ method to detect changes using the polling method, where the program must
repeatedly read the registers.

Use the SRQ method if you must know immediately when a condition changes. Use the SRQ
method in the following situations:

— when you need time- critical notification of changes

— when you are monitoring more than one device that supports SRQs

— when you need to have the controller do something else while waiting
— when you can’t afford the performance penalty inherent to polling

Using the Service Request (SRQ) Method

The programming language, I/O interface, and programming environment must support SRQ
interrupts (for example: BASIC or VISA used with GPIB and VXI-11 over the LAN). Using this
method, you must do the following:

Determine which bit monitors the condition.
Send commands to enable the bit that monitors the condition (transition registers).
Send commands to enable the summary bits that report the condition (event enable registers).

Send commands to enable the status byte register to monitor the condition.

A

Enable the controller to respond to service requests.

The controller responds to the SRQ as soon as it occurs. As a result, the time the controller would
otherwise have used to monitor the condition, as in a loop method, can be used to perform other
tasks. The application determines how the controller responds to the SRQ.

When a condition changes and that condition has been enabled, the request service summary (RQS)
bit in the status byte register is set. In order for the controller to respond to the change, the Service
Request Enable Register needs to be enabled for the bit(s) that will trigger the SRQ.

Generating a Service Request

The Service Request Enable Register lets you choose the bits in the Status Byte Register that will
trigger a service request. Send the *SRE <num> command where <num> is the sum of the decimal
values of the bits you want to enable.

For example, to enable bit 7 on the Status Byte Register (so that whenever the Standard Operation
Status register summary bit is set to 1, a service request is generated) send the command *SRE 128.
Refer to Figure 4-1 on page 149 through Figure 4-8 on page 156 for bit positions and values.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 159

Programming the Status Register System
Accessing Status Register Information

The query command *SRE? returns the decimal value of the sum of the bits previously enabled with
the *SRE <num> command.

To query the Status Byte Register, send the command *STB?. The response will be the decimal sum
of the bits which are set to 1. For example, if bit 7 and bit 3 are set, the decimal sum will be 136
(bit 7 = 128 and bit 3 = 8).

NOTE Multiple Status Byte Register bits can assert an SRQ, however only one bit at a time can set
the RQS bit. All bits that are asserting an SRQ will be read as part of the status byte when
it is queried or serial polled.

The SRQ process asserts SRQ as true and sets the status byte’s RQS bit to 1. Both actions are
necessary to inform the controller that the signal generator requires service. Asserting SRQ informs
the controller that some device on the bus requires service. Setting the RQS bit allows the controller
to determine which signal generator requires service.

This process is initiated if both of the following conditions are true:
* The corresponding bit of the Service Request Enable Register is also set to 1.
* The signal generator does not have a service request pending.

A service request is considered to be pending between the time the signal generator’s SRQ
process is initiated and the time the controller reads the status byte register.

If a program enables the controller to detect and respond to service requests, it should instruct the
controller to perform a serial poll when SRQ is true. Each device on the bus returns the contents of
its status byte register in response to this poll. The device whose request service summary (RQS) bit
is set to 1 is the device that requested service.

NOTE When you read the signal generator’s Status Byte Register with a serial poll, the RQS bit is
reset to 0. Other bits in the register are not affected.

If the status register is configured to SRQ on end-of-sweep or measurement and the mode set to
continuous, restarting the measurement (INIT command) can cause the measuring bit to pulse low.
This causes an SRQ when you have not actually reached the “end-of-sweep” or measurement
condition. To avoid this, do the following:

1. Send the command | N Ti at e: OONTi nuous CFF.
2. Set/enable the status registers.

3. Restart the measurement (send INIT).

Status Register SCPI Commands

Most monitoring of signal generator conditions is done at the highest level using the IEEE 488.2
common commands listed below. You can set and query individual status registers using the
commands in the STATus subsystem.

*CLS (clear status) clears the Status Byte Register by emptying the error queue and clearing all
the event registers.

*ESE, *ESE? (event status enable) sets and queries the bits in the Standard Event Enable Register
which is part of the Standard Event Status Group.

160 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Accessing Status Register Information

*ESR? (event status register) queries and clears the Standard Event Status Register which is part
of the Standard Event Status Group.

*OPC, *OPC? (operation complete) sets bit #0 in the Standard Event Status Register to 1 when all
commands have completed. The query stops any new commands from being processed until the
current processing is complete, then returns a 1.

*PSC, *PSC? (power-on state clear) sets the power-on state so that it clears the Service Request
Enable Register, the Standard Event Status Enable Register, and device-specific event enable
registers at power on. The query returns the flag setting from the *PSC command.

*SRE, *SRE? (service request enable) sets and queries the value of the Service Request Enable
Register.

*STB? (status byte) queries the value of the status byte register without erasing its contents.

:STATus:PRESet presets all transition filters, non-IEEE 488.2 enable registers, and error/event
queue enable registers. (Refer to Table 4-2.)

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 161

Programming the Status Register System
Accessing Status Register Information

Table 4-2 Effects of :STATus:PRESet

Register® Value after
:STATus:PRESet

:STATus:OPERation:ENABle 0
:STATus:OPERation:NTRansition 0
:STATus:OPERation:PTRransition 32767
:STATus:OPERation:BASeband:ENABIle 0
:STATus:OPERation:BASeband:NTRansition 0
:STATus:OPERation:BASeband:PTRransition 32767
:STATus:QUEStionable:CALibration:ENABIle 32767
:STATus:QUEStionable:CALibration:NTRansition 32767
:STATus:QUEStionable:CALibration:PTRansition 32767
:STATus:QUEStionable:ENABle 0
:STATus:QUEStionable:NTRansition 0
:STATus:QUEStionable:PTRansition 32767
:STATus:QUEStionable:FREQuency:ENABIle 32767
:STATus:QUEStionable:FREQuency:NTRansition 32767
:STATus:QUEStionable:FREQuency:PTRansition 32767
:STATus:QUEStionable:MODulation:ENABle 32767
:STATus:QUEStionable:MODulation:NTRansition 32767
:STATus:QUEStionable:MODulation:PTRansition 32767
:STATus:QUEStionable:POWer:ENABle 32767
:STATus:QUEStionable:POWer:NTRansition 32767
:STATus:QUEStionable:POWer:PTRansition 32767
:STATus:QUEStionable:BERT:ENABIle 32767
:STATus:QUEStionable:BERT:NTRansition 32767
:STATus:QUEStionable:BERT:PTRansition 32767

a.Table reflects :STAT:PRES values for an E4438C with options 001/601 or 002/602. To determine the registers that apply to your signal
generator, refer to Figure 4-1 on page 149 through Figure 4-8 on page 156 and Table 4-3 on page 164 through Table 4-12 on page 190.

162

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Byte Group

Status Byte Group
The Status Byte Group includes the Status Byte Register and the Service Request Enable Register.

This is the named

status register for i
Slatus regiet Status Byte Register
However, not all
signal generator 0 [Unused
models use all of
the shown events. i Unused
2 | Error/Event Queue Summary Bit
3 | Data Questionable Summary Bit
4 | Message Available (MAV)
5 | Standard Event Summary Bit
po===---- #»| 6 | Request Service (RQS)
1
i 7 | Operation Status Summary Bit
j
]
|
)
PSP M A S S S Bl
]
\ {
1
(85 |
lr 2) i
A C&\ i
A g&\ 5
-
b @
A ®
i '
&
T
0[1]12]|3|4]|5]|6] 7| Service Request Enable Register

ck721a

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 163

Programming the Status Register System

Status Byte Group

Status Byte Register

Table 4-3 Status Byte Register Bits
Bit Description

0,1 Unused. These bits are always set to 0.

2 Error/Event Queue Summary Bit. A 1 in this bit position indicates that the SCPI error queue is not empty. The SCPI
error queue contains at least one error message.

3 Data Questionable Status Summary Bit. A 1 in this bit position indicates that the Data Questionable summary bit has
been set. The Data Questionable Event Register can then be read to determine the specific condition that caused this
bit to be set.

4 Message Available. A 1 in this bit position indicates that the signal generator has data ready in the output queue.
There are no lower status groups that provide input to this bit.

5 Standard Event Status Summary Bit. A 1 in this bit position indicates that the Standard Event summary bit has been
set. The Standard Event Status Register can then be read to determine the specific event that caused this bit to be set.

6 Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal generator has at least one
reason to require service. This bit is also called the Master Summary Status bit (MSS). The individual bits in the Status
Byte are individually ANDed with their corresponding service request enable register, then each individual bit value is
ORed and input to this bit.

7 Standard Operation Status Summary Bit. A 1 in this bit position indicates that the Standard Operation Status
Group’s summary bit has been set. The Standard Operation Event Register can then be read to determine the specific
condition that caused this bit to be set.

Query: *STB?
Response: The decimal sum of the bits set to 1 including the master summary status bit (MSS) bit 6.
Example: The decimal value 136 is returned when the MSS bit is set low (0).

Decimal sum = 128 (bit 7) + 8 (bit 3)
The decimal value 200 is returned when the MSS bit is set high (1).
Decimal sum = 128 (bit 7) + 8 (bit 3) + 64 (MSS bit)

Service Request Enable Register

The Service Request Enable Register lets you choose which bits in the Status Byte Register trigger a
service request.

*SRE <dat a> <dat a> is the sum of the decimal values of the bits you want to enable except bit 6. Bit 6
cannot be enabled on this register. Refer to Figure 4-1 on page 149 through Figure 4-8 on
page 156.

Example: To enable bits 7 and 5 to trigger a service request when either corresponding status group

register summary bit sets to 1, send the command * SRE 160 (128 + 32).
Query: * SRE?

Response: The decimal value of the sum of the bits previously enabled with the * SRE <dat a> command.

164

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Status Groups

The Standard Operation Status Group and the Data Questionable Status Group consist of the
registers listed below. The Standard Event Status Group is similar but does not have negative or
positive transition filters or a condition register.

Condition

Register A condition register continuously monitors the hardware and firmware status of
the signal generator. There is no latching or buffering for a condition register; it is
updated in real time.

Negative

Transition

Filter A negative transition filter specifies the bits in the condition register that will set
corresponding bits in the event register when the condition bit changes from 1 to
0.

Positive

Transition

Filter A positive transition filter specifies the bits in the condition register that will set
corresponding bits in the event register when the condition bit changes from 0 to
1.

Event

Register An event register latches transition events from the condition register as specified
by the positive and negative transition filters. Once the bits in the event register
are set, they remain set until cleared by either querying the register contents or
sending the *CLS command.

Event

Enable

Register An enable register specifies the bits in the event register that generate the

summary bit. The signal generator logically ANDs corresponding bits in the event
and enable registers and ORs all the resulting bits to produce a summary bit.
Summary bits are, in turn, used by the Status Byte Register.

A status group is a set of related registers whose contents are programmed to produce status
summary bits. In each status group, corresponding bits in the condition register are filtered by the
negative and positive transition filters and stored in the event register. The contents of the event
register are logically ANDed with the contents of the enable register and the result is logically ORed
to produce a status summary bit in the Status Byte Register.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 165

Programming the Status Register System
Status Groups

Standard Event Status Group

The Standard Event Status Group is used to determine the specific event that set bit 5 in the Status
Byte Register. This group consists of the Standard Event Status Register (an event register) and the
Standard Event Status Enable Register.

This is the named
status register for
the B4435C. Operation Complete
However, not all
ignal 1t
models use all of Request Bus Control

the shown events.

Query Error
Device Dependent Error
Execution Error

Command Error
User Request
Power On

o e
~ |
w |«
N
— |
o e

Event Register 7 6

&
Event 0
Enable Register
vy To Status Byte Register Bit #5 ok7288

166 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Standard Event Status Register

Table 4-4 Standard Event Status Register Bits
Bit Description
0 Operation Complete. A 1 in this bit position indicates that all pending signal generator operations were completed
following execution of the * CPC command.
1 Request Control. This bit is always set to 0. (The signal generator does not request control.)
2 Query Error. A 1 in this bit position indicates that a query error has occurred. Query errors have instrument error
numbers from —499 to —400.
3 Device Dependent Error. A 1 in this bit position indicates that a device dependent error has occurred. Device
dependent errors have instrument error numbers from —-399 to —300 and 1 to 32767.
4 Execution Error. A 1 in this bit position indicates that an execution error has occurred. Execution errors have
instrument error numbers from —-299 to —200.
5 Command Error. A 1 in this bit position indicates that a command error has occurred. Command errors have
instrument error numbers from —-199 to —100.
6 User Request Key (Local). A 1 in this bit position indicates that the Local key has been pressed. This is true even if
the signal generator is in local lockout mode.
7 Power On. A 1 in this bit position indicates that the signal generator has been turned off and then on.

Query: *ESR?
Response: The decimal sum of the bits set to 1
Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).

Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the Standard Event Status
Register set the summary bit (bit 5 of the Status Byte Register) to 1.

*ESE <dat a> <dat a> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 7 and bit 6 so that whenever either of those bits are set to 1, the Standard Event
Status summary bit of the Status Byte Register is set to 1. Send the command * ESE 192 (128 +
64).

Query: *ESE?

Response: Decimal value of the sum of the bits previously enabled with the * ESE <dat a> command.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 167

Programming the Status Register System
Status Groups

Standard Operation Status Group

NOTE Some of the bits in this status group do not apply to the E4428C, E8257D, E8267D, E8663B,
and the N5181A/82A, and returns zero when queried. See Table 4-5 on page 169 for more
information.

The Agilent MXG has a SCPI command that can suppress the managing of this status group
and save 50 us from the switching time. Refer to the SCPI Command Reference.

The Operation Status Group is used to determine the specific event that set bit 7 in the Status Byte
Register. This group consists of the Standard Operation Condition Register, the Standard Operation
Transition Filters (negative and positive), the Standard Operation Event Register, and the Standard
Operation Event Enable Register.

This is the named I/Q CALibrating

status register for ;

the E4438C. Settling

However, not all Unused

signal generator SWEeping

models use all of MEASuring

the shown events. i,
Waiting for TRIGger
Unused
Unused
Unused

DCFM/DC$M Null in Progress
Baseband is busy
SWEep Calculating
BERT SYNChronizing
Unused

Unused

Always Zero (0)
l Yy

Sangars Qeeaton (15 14 13 1211 10
Y Y VYV

514 13 12 11 10

Standard Operation + + + + +

Negative [15 14 18 12 11 10

Transition Filter + * + * + +

Standard Operation
Evant Hegimer " [15 14 13 12 11 10

<
-
<
d
<
<
<
<
>
<
<

Standard Operation
Positive |
Transition Filter

— | = - =
o

e
a—

R0
R
R0
R
© la © | © |e] ©
® g @ |a ® |a] @ |
N e N e N e N e
ol ol olddo
O ot 01 | 0 |
On] IR N N = ES
) © e w |le] o e w
N PR [N [D [o e

—
o

&
&

&
&
&
&

)t

= (e

Standard Operation
Event 15 14 13 12 11 10 9 8 7 6

(63}
»
w

o

ven!
Enable Register

¥ To Status Byte Register Bit #7

168 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Table 4-5 Standard Operation Condition Register Bits

Bit Description

0?2 I/Q Calibrating. A 1 in this position indicates an I/Q calibration is in process.

1 Settling. A 1 in this bit position indicates that the signal generator is settling.

2 Unused. This bit position is always set to 0.

3 Sweeping. A 1 in this bit position indicates that a sweep is in progress.

4b Measuring. A 1 in this bit position indicates that a bit error rate test is in progress.

5¢ Waiting for Trigger. A 1 in this bit position indicates that the source is in a “wait for trigger”
state. When option 300 is enabled, a 1 in this bit position indicates that TCH/PDCH
synchronization is established and waiting for a trigger to start measurements.

6,7,8 Unused. These bits are always set to 0.

gd DCFM/DC@M Null in Progress. A 1 in this bit position indicates that the signal generator is
currently performing a DCFM/DC®M zero calibration.

10¢ Baseband is Busy. A 1 in this bit position indicates that the baseband generator is
communicating or processing. This is a summary bit. See the “Baseband Operation Status
Group” on page 171 for more information.

118 Sweep Calculating. A 1 in this bit position indicates that the signal generator is currently doing
the necessary pre-sweep calculations.

12f¢ BERT Synchronizing. A 1 in this bit position is set while the BERT is synchronizing to ‘BCH’,
then ‘TCH’ and then to ‘PRBS’.

13, 14 Unused. These bits are always set to 0.
15 Always 0.

a.In the N5181A, E4428C, E8257D, and E8663B, this bit is always set to 0.

b.In the N5181A, N5182A, E4428C, E8663B, E8257D, and E8267D this bit is always set to 0.
¢.Option 300 is only available on the E4438C.

d.In the N5181A, N5182A, E4428C, E8257D, and E8663B, this bit is always set to 0.

e.In the N5181A and N5182A this bit is always set to 0.

f. In the E8663B, E8257D, and E8267D this bit is unused.

g.In the N5181A, N5182A, and E4428C and this bit is always set to 0.

Query:

Response:

STATus: OPERat i on: CONDi ti on?

The decimal sum of the bits set to 1

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 169

Programming the Status Register System
Status Groups

Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1
to 0).

Commands: STATus: OPERat i on: NTRansi ti on <val ue> (negative transition), or
STATus: CPERat i on: PTRansi ti on <val ue> (positive transition), where

<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: OPERat i on: NTRansi t i on?
STATus: OPERat i on: PTRansi ti on?

Standard Operation Event Register

The Standard Operation Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read only. Reading data from an
event register clears the content of that register.

Query: STATus: OPERat i on[: EVENt] ?

Standard Operation Event Enable Register

The Standard Operation Event Enable Register lets you choose which bits in the Standard Operation
Event Register set the summary bit (bit 7 of the Status Byte Register) to 1.

Command: STATus: CPERat i on: ENABl e <val ue>, where
<val ue> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Standard Operation
Status summary bit of the Status Byte Register is set to 1. Send the command STAT: OPER: ENAB 520
(512 + 8).

Query: STATus: CPERat i on: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the STATus: OPERat i on: ENABI e

<val ue> command.

170 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Baseband Operation Status Group

NOTE This status group does not apply to the E4428C, E8257D, and the E8663B, and if queried,
returns zero. See Table 4-6 on page 172 for more information.

This status group does not apply to the N5181A/82A. (If queried, the signal generator will
not respond.)

The Baseband Operation Status Group is used to determine the specific event that set bit 10 in the
Standard Operation Status Group. This group consists of the Baseband Operation Condition Register,
the Baseband Operation Transition Filters (negative and positive), the Baseband Operation Event
Register, and the Baseband Operation Event Enable Register.
This is the named
status register for Baseband 1 Busy

the E4438C. Baseband 1 Communicating
However, not all Unused
signal generator
models use all of Unused
the shown events. Unused

Unused

Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Always Zero (0)
l Y Y VY VY YO

Baseband Operation

Condition Repgister |15 14 13
Baseband Operation + + +
Positive |15 14 13 12 11 10
Transition Filter + +

<
%
@
<
<
%
<
@
B
o
had

e 5
]
e
< ~

Baseband Operation
Negative 15 14 13 12 11 10

Transition Filter
VYV

BasebandOperation|15 14 13 12 11 10

Event Register

[Ny P [
O [4] O [4 O [O

[
e
==

% <

% |

20 |
© |4 o |e]{ o e o
S © g © |g{ © |4 © |«
=) BN P RN VI N I
) ol ool o
) 0 e 01 e O | 0 [=
) B SN T N
) [A AN T)
NP0 | D [D [D |

_

&
&
&

@ 3

D Y
Baseband Operation f
Event . 15 14 13 12 11 10 9 8 7 6 5 4 3 1 O|
Enable Register
Y To Operation Status Register Bit #10 ck712c

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 171

Programming the Status Register System
Status Groups

Baseband Operation Condition Register

The Baseband Operation Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Table 4-6 Baseband Operation Condition Register Bits

Bit Description
0 Baseband 1 Busy. A 1 in this position indicates the signal generator baseband is active.
1 Baseband 1 Communicating. A 1 in this bit position indicates that the signal generator baseband generator is

handling data IO.

2-14 Unused. This bit position is always set to 0.

15 Always 0.

Query: STATus: OPERat i on: BASeband: GONDI t i on?
Response: The decimal sum of the bits set to 1

Example: The decimal value 2 is returned. The decimal sum = 2 (bit 1).

Baseband Operation Transition Filters (negative and positive)

The Baseband Operation Transition Filters specify which types of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1
to 0).

Commands: STATus: CPERat i on: BASeband: NTRansi ti on <val ue> (negative transition), or
STATus: OPERat i on: BASeband: PTRansi ti on <val ue> (positive transition), where

<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: OPERat i on: BASeband: NTRansi t i on?
STATus: OPERat i on: BASeband: PTRansi ti on?

172 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Baseband Operation Event Register

The Baseband Operation Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read only. Reading data from an
event register clears the content of that register.

Query: STATus: OPERat i on: BASeband[: EVENt] ?

Baseband Operation Event Enable Register

The Baseband Operation Event Enable Register lets you choose which bits in the Baseband Operation
Event Register can set the summary bit (bit 7 of the Status Byte Register).

Command: STATus: CPERat i on: BASeband: ENAB| e <val ue>, where
<val ue> is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 0 and bit 1 so that whenever either of those bits are set to 1, the Baseband Operation
Status summary bit of the Status Byte Register is set to 1. Send the command STAT: OPER: ENAB (2 +
1.

Query: STATus: CPERat i on: BASeband: ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the

STATus: OPERat i on: BASeband: ENAB| e <val ue> command.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 173

Programming the Status Register System
Status Groups

Data Questionable Status Group

NOTE Some of the bits in this status group do not apply to the E4428C, E8257D, E8267D, E8663B,
and the N5181A/82A, and returns zero when queried. Other bits have changed state content.
See Table 4-7 on page 175 for more information.

The Data Questionable Status Group is used to determine the specific event that set bit 3 in the
Status Byte Register. This group consists of the Data Questionable Condition Register, the Data
Questionable Transition Filters (negative and positive), the Data Questionable Event Register, and the
Data Questionable Event Enable Register.

This is the named

status register for Unused

the E4438C. Unused

However, not all

signal generator Unused

models use all of POWer (summary)

the shown events. TEMPerature (OVEN COLD)
FREQuency (summary)
Unused

MODulation (summary)
CALibration (summary)
SELFtest
Unused
Unused
BERT (summary)
Unused

Unused

Always Zero (0)
l Y Yyvy

Data QUEStionable
Condition Register |15 14 13 12 1

<

N o N N - N -

<
<
<
<%
<

\ A

;
vy

Data QUEStionable

]
S e 3 =

L
© |4 © e © [« ©
® |a| © le © (4

o[ot o 4 o |«
O [O [O [O
S DD s
W e W | W [w

R0
()
Ro
)
)t
N—b@)dir\)d—r\)d—r\)d—m‘

Positve 15 14 13 12 11 1 o|
ransition Filter
Data QUEStionable + + + + ++
Neoate . 1514 13 12 11 10 1 0]
' EERER’ vy
10

Data QUEStionable
Data QuESHonable | 15 14 13 12 11 10|
& %
&
(& %
@ 393
0 \ 4
b
& f&
Eata QUEStionable f
t
Bt Register [1514 13 12 1110987654321 0]
¥ To Status Byte Register Bit #3 o722k

174 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware and firmware status of
the signal generator. Condition registers are read only.

Table 4-7 Data Questionable Condition Register Bits

Bit Description
0,1, 2 Unused. These bits are always set to 0.
3 Power (summary). This is a summary bit taken from the QUEStionable:POWer register. A 1 in this bit position

indicates that one of the following may have happened: The ALC (Automatic Leveling Control) is unable to
maintain a leveled RF output power (i.e., ALC is UNLEVELED), the reverse power protection circuit has been
tripped. See the “Data Questionable Power Status Group” on page 177 for more information.

4 N5181A/82A: ALC Heater Detector (COLD). A 1 in this bit position indicates that the ALC detector is cold.

E4428C/38C, E8257D/67D, and E8663B: Temperature (OVEN COLD). A 1 in this bit position indicates that
the internal reference oscillator (reference oven) is cold.

5 Frequency (summary). This is a summary bit taken from the QUEStionable:FREQuency register. A 1 in this bit
position indicates that one of the following may have happened: synthesizer PLL unlocked, 10 MHz reference
VCO PLL unlocked, 1 GHz reference unlocked, sampler, YO loop unlocked or baseband 1 unlocked. For more
information, see the “Data Questionable Frequency Status Group” on page 180.

6 Unused. This bit is always set to 0.

7 Modulation (summary). This is a summary bit taken from the QUEStionable:MODulation register. A 1 in this
bit position indicates that one of the following may have happened: modulation source 1 underrange,
modulation source 1 overrange, modulation source 2 underrange, modulation source 2 overrange, or modulation
uncalibrated. See the “Data Questionable Modulation Status Group” on page 183 for more information.

gab Calibration (summary). This is a summary bit taken from the QUEStionable:CALibration register. A 1 in this
bit position indicates that one of the following may have happened: an error has occurred in the DCFM/DC®M
zero calibration, or an error has occurred in the I/Q calibration. See the “Data Questionable Calibration Status
Group” on page 186 for more information.

9 Self Test. A 1 in this bit position indicates that a self-test has failed during power-up. Reset this bit by cycling
the signal generator’s line power. *CLS will not clear this bit.

10, 11 Unused. These bits are always set to 0.

12¢ BERT (summary). This is a summary bit taken from the QUEStionable:BERT register. A 1 in this bit position
indicates that one of the following occurred: no BCH/TCH synchronization, no data change, no clock input,
PRBS not synchronized, demod/DSP unlocked, or demod unleveled. See the “Data Questionable BERT Status
Group” on page 189 for more information.

13, 14 Unused. These bits are always set to 0.

15 Always 0.

a.In the N5182A, this bit applies only to the 1/Q calibration. In the N5181A, this bit is unused and always set to 0.
b.In the E8257D, and the E8663B this bit applies only to the DCFM/DC®M calibration.
c.In the N5181A, N5182A, E4428C, E8257D, E8267D, and the E8663B this bit is always set to 0.

Query: STATus: QUESt i onabl e: CONDi ti on?

Response: The decimal sum of the bits set to 1

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 175

Programming the Status Register System
Status Groups

Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1
to 0).

Commands: STATus: QUESt i onabl e: NTRansi ti on <val ue> (negative transition), or
STATus: QUESt i onabl e: PTRansi ti on <val ue> (positive transition), where

<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: NTRansi ti on?
STATus: QUESti onabl e: PTRansi ti on?

Data Questionable Event Register

The Data Questionable Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus: QUESti onabl e[: EVEN] ?

Data Questionable Event Enable Register
The Data Questionable Event Enable Register lets you choose which bits in the Data Questionable
Event Register set the summary bit (bit 3 of the Status Byte Register) to 1.

Command: STATus: QUESt i onabl e: ENABl e <val ue> where <val ue> is the sum of the decimal values of the bits
you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable Status
summary bit of the Status Byte Register is set to 1. Send the command STAT: QUES: ENAB 520 (512 +
8).

Query: STATus: QUESt i onabl e: ENAB e?

Response: Decimal value of the sum of the bits previously enabled with the STATus: QUESt i onabl e: ENAB| e

<val ue> command.

176 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Power Status Group

NOTE Some of the bits in this status group do not apply to the E4428C, E8257D, E8267D, E8663B,
and the N5181A/82A, and returns zero when queried. See Table 4-8 on page 178 for more
information.

The Data Questionable Power Status Group is used to determine the specific event that set bit 3 in
the Data Questionable Condition Register. This group consists of the Data Questionable Power
Condition Register, the Data Questionable Power Transition Filters (negative and positive), the Data
Questionable Power Event Register, and the Data Questionable Power Event Enable Register.

This is the named
status register for Reverse Power Protection Tripped
the E4438C. Unleveled

However, not all .

signal ge'nerator 1Q Mod Overdrive
models use all of Lowband Detector Fault
the shown events. Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Unused
Unused

Always Zero (0)
Data QUEStionable l Y Y Y VY Y
Power [15 14 13 12 11 10

Condition Register

Data QUEStionable + + +

POwer [15 14 13 12 1 10

Transition Filter

Data QUEStionable + + +
POWer [15 14 13 12 11 10
Negative

Transition Filter + + +

Powe e 115 14 13 12 11 10

Event Register

<
d
<
<

e
a—
e

e
e
e

||
|
|
© (4 © |4 © (4 © |«
© | © lg— © |- ©
N N N e~
O [4] O [4{ O [O
O [O [O [»
N SIS Il
W W W W

+
)
)
R0
R0
R0
)t
)
)
O
)
N P e O [o [N] 1 [

&
&

&

&

Data QUEStionable

S, =] o | 2 e o -

POWer
Event 15 14 13 12 1110 9 8 7 6 5 4 3 0|
Enable Register

To Data Questionable Status Register Bit #3 ck704c

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 177

Programming the Status Register System
Status Groups

Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read only.

Table 4-8 Data Questionable Power Condition Register Bits

Bit Description

02 Reverse Power Protection Tripped. A 1 in this bit position indicates that the reverse power protection (RPP) circuit
has been tripped. There is no output in this state. Any conditions that may have caused the problem should be
corrected. Reset the RPP circuit by sending the remote SCPI command: OUTput:PROTection:CLEar. Resetting the RPP
circuit bit, resets this bit to 0.

1 Unleveled. A 1 in this bit position indicates that the output leveling loop is unable to set the output power.
ob IQ Mod Overdrive. A 1 in this bit position indicates that the signal level into the IQ modulator is too high.
3¢ Lowband Detector Fault. A 1 in this bit position indicates that the lowband detector heater circuit has failed.

4-14 Unused. These bits are always set to 0.

15 Always 0.

a.In the N5181A/82A with Option 506, and the E4428C/38C with Option 506, this bit is set to 0.
b.In the N5181A/82A, E4428C, E8257D/67D, and E8663B, this bit is set to 0.

Query: STATus: QUESt i onabl e: POAér: CONDI ti on?

Response: The decimal sum of the bits set to 1.

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus: QUESt i onabl e: POAr : NTRansi ti on <val ue> (negative transition), or
STATus: QUESt i onabl e: POAer : PTRansi ti on <val ue> (positive transition), where

<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: POAer : NTRansi ti on? STATus: QUESt i onabl e: PO/ér : PTRansi ti on?

Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus: QUESt i onabl e: POMNér[: EVENL] ?

178 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bits in the Data
Questionable Power Event Register set the summary bit (bit 3 of the Data Questionable Condition
Register) to 1.

Command: STATus: QUESt i onabl e: POMer : ENABl e <val ue> where <val ue> is the sum of the decimal values of
the bits you want to enable

Example: Enable bit 3 and bit 2 so that whenever either of those bits are set to 1, the Data Questionable Power
summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT: QUES: PON ENAB 520 (8 + 4).

Query: STATus: QUESt i onabl e: PONér : ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: POAer : ENABI e <val ue> command.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 179

Programming the Status Register System

Status Groups

Data Questionable Frequency Status Group

NOTE Some bits in this status group do not apply to the N5181A/82A, E4428C, E8257D, and the
E8663B and returns zero when queried. See Table 4-9 on page 181 for more information.

The Data Questionable Frequency Status Group is used to determine the specific event that set bit 5
in the Data Questionable Condition Register. This group consists of the Data Questionable Frequency
Condition Register, the Data Questionable Frequency Transition Filters (negative and positive), the
Data Questionable Frequency Event Register, and the Data Questionable Frequency Event Enable

Register.

This is the named
status register for
the E4438C.
However, not all
signal generator
models use all of

the shown events.

Synthesizer Unlocked
10 MHz Reference Unlocked
1 GHz Reference Unlocked
Baseband 1 Unlocked
Unused
Sampler Loop Unlocked
YO Loop Unlocked
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused ——m8M ———
Always Zero (0)

Data QUEStionabIe_l Y YV VY
ey giter L1514 13 12 11 10

Data QUEStionable + +

EREQuency [15 14 13 12 11 10

Transition Filter

Data QUEStionable + + +
FREQuency [15 14 18 12 11 10
egative

Transition Filter + * +

PRtouancy e [15 14 13 12 11 10

Event Register

<
<

<
d
<
d
<
d
]
<
<
<t
<
<
d

[
[
]
[= [
[

l—
]
[

© |4 © (4 © 4 ©

_L‘__A
|

[
[
o
[
[

D (g O |g— O |g— ®
~N o N N e N
[ON L s RON L NON o Nl
01 |- O e O [
g PV Ny P I N SV N
W [© [0 [w

+
O
O
2
%
O
L
O
D
)
e
NP o | D [D] o

= &

-
[=]

&
&

&

o

Data QUEStionable
FREQuency
Event 15 14 13 12 11 10 9 8 7 6

Enable Register
To Data Questionable Status Register Bit #5 ck706¢

o
EN
W

o

180

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System

Data Questionable Frequency Condition Register

Status Groups

The Data Questionable Frequency Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read-only.

Table 4-9 Data Questionable Frequency Condition Register Bits

Bit Description
0 Synth. Unlocked. A 1 in this bit position indicates that the synthesizer is unlocked.
1 10 MHz Ref Unlocked. A 1 in this bit position indicates that the 10 MHz reference signal is unlocked.
22 1 GHz Ref Unlocked. A 1 in this bit position indicates that the 1 GHz reference signal is unlocked.
gb Baseband 1 Unlocked. A 1 in this bit position indicates that the baseband generator is unlocked.
4 Unused. This bit is always set to 0.
5P Sampler Loop Unlocked. A 1 in this bit position indicates that the sampler loop is unlocked.
6 YO Loop Unlocked. A 1 in this bit position indicates that the YO loop is unlocked.
7-14 Unused. These bits are always set to 0.
15 Always 0.

a.In the N5181A and N5182A these bits are always set to 0.
b.In the N5181A/82A, E4428C, E8257D, and the E8663B, this bit is always set to 0.

Query: STATus: QUESt i onabl e: FREQuency: CONDi ti on?

Response: The decimal sum of the bits set to 1.

Data Questionable Frequency Transition Filters (negative and positive)

Specifies which types of bit state changes in the condition register set corresponding bits in the event
register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUES i onabl e: FREQuency: NTRansi ti on <val ue> (negative transition) or

STATus: QUESt i onabl e: FREQuency: PTRansi ti on <val ue> (positive transition) where <val ue> is the

sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESti onabl e: FREQuency: NTRansi ti on?
STATus: QUESt i onabl e: FREQuency: PTRansi ti on?

Data Questionable Frequency Event Register

Latches transition events from the condition register as specified by the transition filters. Event
registers are destructive read-only. Reading data from an event register clears the content of that
register.

Query: STATus: QUESt i onabl e: FREQuency[: EVENt] ?

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

181

Programming the Status Register System
Status Groups

Data Questionable Frequency Event Enable Register
Lets you choose which bits in the Data Questionable Frequency Event Register set the summary bit
(bit 5 of the Data Questionable Condition Register) to 1.

Command: STATus: QUESt i onabl e: FREQuency: ENABl e <val ue>, where <val ue> is the sum of the decimal values
of the bits you want to enable.

Example: Enable bit 4 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Frequency summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT: QUES: FREQ ENAB 520 (16 + 8).

Query: STATus: QUESt i onabl e: FREQuency: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: FREQuency: ENABI e <val ue> command.

182 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Modulation Status Group

NOTE This status group does not apply to the N5181A and the N5182A, and returns zero when

queried. See Table 4-10 on page 184 for more information.

The Data Questionable Modulation Status Group is used to determine the specific event that set bit 7
in the Data Questionable Condition Register. This group consists of the Data Questionable Modulation
Condition Register, the Data Questionable Modulation Transition Filters (negative and positive), the

Data Questionable Modulation Event Register, and the Data Questionable Modulation Event Enable

Register.

This is the named
status register for
the E4438C.
However, not all
signal generator
models use all of
the shown events.

Modulation 1 Undermod

Modulation 1 Overmod
Modulation 2 Undermod

Modulation 2 Overmod

Modulation Uncalibrated

Unused

Unused

Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Always Zero (0)
Data QUEStionable l Yy vyy

<
%

-
Bl

-
%

<

<
Bl

MODulation
Condition Register | 15 14 13 12 11

Data QUEStionable + + + +

| = |

MODulation
Positive [15 12 13 12 11

3 e 2 |

Transition Filter
Data QUEStionable + + + + +

] =

—_
o

MODulation [15 14 18 12 11
Negative

Transition Filter + + + + +

e

Data QUEStionable

© |4 © [4 © [4 ©
© g © |4 @ |4
~N] N e N e N (-
o[O[O [t o
O [O [O [O
N N T RN P N
[o N B N

- e

NP D - o e o o [

y

MoDuaton [15 14 13 12 11 10 0|
Event Register
; *
% &
(&
&
& &
3 O}
& Y
%) X
® Y
X
Data QUEStionable 3
MODulation
Event 15 14 13 12 11 10 9 8 7 6 5 4 3 10|
Enable Register
I To Data Questionable Status Register Bit #7 ok708c

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

183

Programming the Status Register System
Status Groups

Data Questionable Modulation Condition Register

The Data Questionable Modulation Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read-only.

Table 4-10 Data Questionable Modulation Condition Register Bits

Bit Description
0 Modulation 1 Undermod. A 1 in this bit position indicates that the External 1 input, ac coupling on, is less than
0.97 volts.
1 Modulation 1 Overmod. A 1 in this bit position indicates that the External 1 input, ac coupling on, is more than
1.03 volts.
2 Modulation 2 Undermod. A 1 in this bit position indicates that the External 2 input, ac coupling on, is less than
0.97 volts.
3 Modulation 2 Overmod. A 1 in this bit position indicates that the External 2 input, ac coupling on, is more than
1.03 volts.
4 Modulation Uncalibrated. A 1 in this bit position indicates that modulation is uncalibrated.
5-14 Unused. This bit is always set to 0.
15 Always 0.

Query: STATus: QUESt i onabl e: MCDul at i on: CONDi ti on?

Response: The decimal sum of the bits set to 1

Data Questionable Modulation Transition Filters (negative and positive)

The Data Questionable Modulation Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus: QUESt i onabl e: MODul at i on: NTRansi ti on <val ue> (negative transition), or

STATus: QUESt i onabl e: MDul at i on: PTRansi tion <val ue> (positive transition), where <val ue> is
the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: MODul at i on: NTRansi ti on?
STATus: QUESt i onabl e: MDul at i on: PTRansi ti on?

Data Questionable Modulation Event Register

The Data Questionable Modulation Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus: QUESt i onabl e: MODul ati on[: EVEN] ?

184 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Modulation Event Enable Register

The Data Questionable Modulation Event Enable Register lets you choose which bits in the Data
Questionable Modulation Event Register set the summary bit (bit 7 of the Data Questionable
Condition Register) to 1.

Command: STATus: QUESt i onabl e: MoDul at i on: ENABI e <val ue> where <val ue> is the sum of the decimal values
of the bits you want to enable.

Example: Enable bit 4 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Modulation summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT: QUES: MOD: ENAB 520 (16 + 8).

Query: STATus: QUESt i onabl e: MDul at i on: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: MODul ati on: ENABI e <val ue> command.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 185

Programming the Status Register System
Status Groups

Data Questionable Calibration Status Group

NOTE Some bits in this status group do not apply to the N5181A/82A, E4428C, E8257D, and the
E8663B, and return zero when queried. See Table 4-11 on page 187 for more information.

The Data Questionable Calibration Status Group is used to determine the specific event that set bit 8
in the Data Questionable Condition Register. This group consists of the Data Questionable Calibration
Condition Register, the Data Questionable Calibration Transition Filters (negative and positive), the
Data Questionable Calibration Event Register, and the Data Questionable Calibration Event Enable
Register.

This is the named -
status register for DCFM/DCM Zero Failure

the E4438C. 1/Q Calibration Failure
However, not all
signal generator
models use all of Unused
the shown events. Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Unused

Unused
Unused
Unused ——
Always Zero (0)

Data_QU_EStionabIe_l vy
8érl;zibi{iaotrl1°£egister | 15 14 13 12 11 10

Data QUEStionable + + + ‘ + *
CALibration

%casnit';‘i};:ieonFilter |15 14 18 12 11 10
Data QUEStionable + + + + + +
CALibration [15 14 13 12 11 10
egative

Transition Filter + + + + + +

Data QUEStionable
CALibration |15 14 13 12 11 10

Event Regist:

<
<
<
<
o [O [O 4 o (@
<
<t
<
N

W | W e w

'S
2
%
%
)
)
)
)
N PN [o [D [D [

=

© |a| © (e © (4] ©
® | © (g © (4] o |
N e N e N e~
0 | o [o [o |
EN) N S F N E N

&
&

&
&
&

=)

Data QUEStionable
CALibration

Event . 15 14 13 12 11 10 9 8 7 6 5 4 3
Enable Register

o

Y To Data Questionable Status Register Bit #8 ck720a

186 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors the calibration status of
the signal generator. Condition registers are read only.

Table 4-11 Data Questionable Calibration Condition Register Bits
Bit Description
0? DCFM/DC®M Zero Failure. A 1 in this bit position indicates that the DCFM/DC®M zero calibration routine has
failed. This is a critical error. The output of the source has no validity until the condition of this bit is 0.
1P I/Q Calibration Failure. A 1 in this bit position indicates that the I/Q modulation calibration experienced a failure.
2-14 Unused. These bits are always set to 0.
15 Always 0.

a.In the N5181A and N5182A, this bit is set to 0.
b.In the N5181A, E4428C, E8257D, and the E8663B, this hit is set to 0.

Query: STATus: QUESt i onabl e: CALi brati on: COND ti on?

Response: The decimal sum of the bits set to 1.

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus: QUESt i onabl e: CALi br at i on: NTRansi ti on <val ue> (negative transition), or

STATus: QUESti onabl e: CALi brati on: PTRansi ti on <val ue> (positive transition), where <val ue> is
the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: CALi br ati on: NTRansi ti on?

STATus: QUESti onabl e: CALi brati on: PTRansi ti on?

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus: QUESt i onabl e: CALi brati on[: EVENt] ?

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 187

Programming the Status Register System
Status Groups

Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose which bits in the Data
Questionable Calibration Event Register set the summary bit (bit 8 of the Data Questionable
Condition register) to 1.

Command: STATus: QUES i onabl e: CALi brati on: ENABl e <val ue>, where <val ue> is the sum of the decimal
values of the bits you want to enable.

Example: Enable bit 1 and bit 0 so that whenever either of those bits are set to 1, the Data Questionable
Calibration summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT: QUES: CAL: ENAB 520 (2 + 1).

Query: STATus: QUESt i onabl e: CALi brat i on: ENAB e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: CALi br ati on: ENABI e <val ue> command.

188 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Data Questionable BERT Status Group

Programming the Status Register System

Status Groups

NOTE This status group applies only to the E4438C.

The Data Questionable BERT Status Group is used to determine the specific event that set bit 12 in
the Data Questionable Condition Register. The Data Questionable Status group consists of the Data

Questionable BERT Condition Register, the Data Questionable BERT Transition Filters (negative and
positive), the Data Questionable BERT Event Register, and the Data Questionable BERT Event Enable

Register.

@

No Clock
No Data Change
PRBS Sync Loss
Unused

Unused

Unused

Unused
Unused

Unused

Unused

Unused

Downconv/Demod
Unlocked

Demod DSP

Ampl Out of Range

Sync. to BCH/TCH/PDCH
Waiting for TCH/PDCH 1

Always Zero (0)
Data QUEStionable 1
BERT

Condition Register |

Data QUEStionable
BERT

Positive

Transition Filter
Data QUEStionable

BERT
Negative

Transition Filter

Data QUEStionable
BERT

4 ¥ V. % YYYYVYYVYYY

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0|
I EEEEEETEEEEEEY
151413 21110087 654321 0|
' EEEEEREEEEEEEEEY
[151413 12 1110987 6543 21 0]
vV VYVYVYVYVYVYY
[15 1413 2 1110987 6543821 0]

Event Register

&
&

Data QUEStionable

BERT
Event
Enable Register

Y
o Xy
oY
o
1514 18 12 111098 7 654 3 2 1 0|

Y To Data Questionable Status Register Bit #12

ck710c

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

189

Programming the Status Register System
Status Groups

Data Questionable BERT Condition Register

The Data Questionable BERT Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read only.

Table 4-12 Data Questionable BERT Condition Register Bits

Bit Description

0 No Clock. A 1 in this bit position indicates no clock input for more than 3 seconds.
1 No Data Change. A 1 in this bit position indicates no data change occurred during the last 200 clock signals.
2 PRBS Sync Loss. A 1 is set while PRBS synchronization is not established. *RST sets the bit to zero.

3-10 Unused. These bits are always set to 0.

11 Down conv. / Demod Unlocked. A 1 in this bit position indicates that either the demodulator or the down converter
is out of lock.

12 Demod DSP Ampl out of range. A 1 in this bit position indicates the demodulator amplitude is out of range. The
*RST command sets this bit to zero (0).

13 Sync. to BCH/TCH/PDCH. If the synchronization source is BCH, a 1 in this bit position indicates BCH
synchronization is not established; it does not indicate the TCH/PDCH synchronization status. If the sync source is
TCH or PDCH, a 1 in this bit position indicates that TCH or PDCH synchronization is not established. *RST sets this
bit to zero.

14 Waiting for TCH/PDCH. A 1 in this bit position indicates that a TCH or PDCH midamble has not been received. This
bit is set when bit 13 is set. The bit is also set when the TCH or PDCH synchronization was once locked and then
lost (in this case the front panel displays “WAITING FOR TCH (or PDCH)”). *RST sets this bit to zero.

15 Always 0.

Query: STATus: QUESt i onabl e: BERT: CONDi ti on?

Response: The decimal sum of the bits set to 1.

190 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable BERT Transition Filters (negative and positive)

The Data Questionable BERT Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or

negative (1 to 0).

Commands:

Queries:

STATus: QUESt i onabl e: BERT: NTRansi ti on <val ue> (negative transition), or
STATus: QUESt i onabl e: BERT: PTRansi ti on <val ue> (positive transition), where

<val ue> is the sum of the decimal values of the bits you want to enable.

STATus: QUESt i onabl e: BERT: NTRansi ti on? STATus: QUESt i onabl e: BERT: PTRansi ti on?

Data Questionable BERT Event Register

The Data Questionable BERT Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query:

STATus: QUESt i onabl e: BERT[: EVEN] ?

Data Questionable BERT Event Enable Register

The Data Questionable BERT Event Enable Register lets you choose which bits in the Data
Questionable BERT Event Register set the summary bit (bit 3 of the Data Questionable Condition

Register) to 1.

Command:

Example:

Query:

Response:

STATus: QUESt i onabl e: BERT: ENABl e <val ue> where <val ue> is the sum of the decimal values of the
bits you want to enable

Enable bit 11 and bit 2 so that whenever either of those bits are set to 1, the Data Questionable BERT
summary bit of the Data Questionable Condition Register is set to 1. Send the command

STAT: QUES: BERT: ENAB 520 (2048 + 4).

STATus: QUESt i onabl e: BERT: ENAB| e?

Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: BERT: ENABI e <val ue> command.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 191

Programming the Status Register System
Status Groups

192 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

5 Creating and Downloading Waveform Files

NOTE The ability to play externally created waveform data in the signal generator is available only

in the N5182A with Option 651/652/654, E4438C ESG Vector Signal Generators with Option
001/601 or 002/602, and E8267D PSG Vector Signal Generators with Option 601 or 602.

This chapter explains how to create Arb-based waveform data and download it into the signal
generator.

“Overview of Downloading and Extracting Waveform Files” on page 194
“Understanding Waveform Data” on page 196

“Waveform Structure” on page 203

“Waveform Phase Continuity” on page 206

“Waveform Memory” on page 209

“Commands for Downloading and Extracting Waveform Data” on page 216
“Creating Waveform Data” on page 225

“Downloading Waveform Data” on page 232

“Loading, Playing, and Verifying a Downloaded Waveform” on page 238
“Using the Download Utilities” on page 241

“Downloading E443xB Signal Generator Files” on page 242
“Programming Examples” on page 245

“Troubleshooting Waveform Files” on page 292

N5181A/82A Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 193

Creating and Downloading Waveform Files
Overview of Downloading and Extracting Waveform Files

Overview of Downloading and Extracting Waveform Files

The signal generator lets you download and extract waveform files. You can create these files either
external to the signal generator or by using one of the internal modulation formats (ESG/PSG only).
The signal generator also accepts waveforms files created for the earlier E443xB ESG signal generator
models. For file extractions, the signal generator encrypts the waveform file information. The
exception to encrypted file extraction is user-created I/Q data. The signal generator lets you extract
this type of file unencrypted. After extracting a waveform file, you can download it into another
Agilent signal generator that has the same option or software license required to play it. Waveform
files consist of three items:

1. I/Q data
2. Marker data
3. File header

NOTE This order of download is required, as the I/Q data downloads result in deletion of all of
these three parts of the file.

The signal generator automatically creates the marker file and the file header if the two items are not
part of the download. In this situation, the signal generator sets the file header information to
unspecified (no settings saved) and sets all markers to zero (off).

There are three ways to download waveform files: FTP, programmatically or using one of three
available free download utilities created by Agilent Technologies:

¢ Intuilink for Agilent MXG/PSG/ESG Signal Generators
hitp://www.agilent.com/find/intuilink

¢ Agilent MXG/PSG/ESG Download Assistant for use only with MATLAB
hitp://www.agilent.com/find/downloadassistant

¢ NT7622A Signal Studio Toolkit
hitp.//www.agilent.com/find/signalstudio

NOTE FTP can be used without programming commands to transfer files from the PC to the signal
generator or from the signal generator to the PC.

194 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Overview of Downloading and Extracting Waveform Files

Waveform Data Requirements

To be successful in downloading files, you must first create the data in the required format.
¢ Signed 2’s complement

¢ 2-byte integer values

¢ Input data range of —32768 to 32767

¢ Minimum of 60 samples per waveform (60 I and 60 Q data points)

¢ Interleaved I and Q data

¢ Big endian byte order

¢ The same name for the marker, header, and I/Q file

This is only a requirement if you create and download a marker file and or file header, otherwise
the signal generator automatically creates the marker file and or file header using the I/Q data
file name. For more information, see “Waveform Structure” on page 203.

For more information on waveform data, see “Understanding Waveform Data” on page 196.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 195

Creating and Downloading Waveform Files
Understanding Waveform Data

Understanding Waveform Data

The signal generator accepts binary data formatted into a binary I/Q file. This section explains the
necessary components of the binary data, which uses ones and zeros to represent a value.

Bits and Bytes

Binary data uses the base-two number system. The location of each bit within the data represents a
value that uses base two raised to a power (2“’1). The exponent is n — 1 because the first position is
zero. The first bit position, zero, is located at the far right. To find the decimal value of the binary
data, sum the value of each location:

1101 = (1 x2%) + (1 x2%) + (0 x 21) + (1 x 20)
=1 x8)+ (A x4)+(0x2)+(1x1
13 (decimal value)

Notice that the exponent identifies the bit position within the data, and we read the data from right
to left.

The signal generator accepts data in the form of bytes. Bytes are groups of eight bits:

01101110 = (0 x27) + (1 x25%) + (1 x 25%) + (0 x 2% +(1 x23) + (1 x22) + (1 x 21) + (0 x 29
= 110 (decimal value)

The maximum value for a single unsigned byte is 255 (11111111 or 28—1), but you can use multiple
bytes to represent larger values. The following shows two bytes and the resulting integer value:

01101110 10110011= 28339 (decimal value)

The maximum value for two unsigned bytes is 65535. Since binary strings lengthen as the value
increases, it is common to show binary values using hexadecimal (hex) values (base 16), which are
shorter. The value 65535 in hex is FFFF. Hexadecimal consists of the values O, 1, 2, 3, 4, 5, 6, 7, 8,
9, A B, C, D, E, and F. In decimal, hex values range from 0 to 15 (F). It takes 4 bits to represent a
single hex value.

1 = 0001 2 = 0010 3 = 0011 4 = 0100 5 = 0101
6 = 0110 7 = 0111 8 = 1000 9 = 1001 A = 1010
B = 1011 C = 1100 D = 1101 E = 1110 F = 1111

For I and Q data, the signal generator uses two bytes to represent an integer value.

LSB and MSB (Bit Order)

Within groups (strings) of bits, we designate the order of the bits by identifying which bit has the
highest value and which has the lowest value by its location in the bit string. The following is an
example of this order.

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at the far left of the bit
string.

196 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at the far right of the
bit string.
Bit Position 15 14 13 12 1110 9 8 7 65 4 321 0
Data 1 01101 11 11101001\
MSB LSB

Because we are using 2 bytes of data, the LSB appears in the second byte.

Little Endian and Big Endian (Byte Order)

When you use multiple bytes (as required for the waveform data), you must identify their order. This
is similar to identifying the order of bits by LSB and MSB. To identify byte order, use the terms little

endian and big endian. These terms are used by designers of computer processors.
Little Endian Order (Or “Intel Order”)
The lowest order byte that contains bits 0—7 comes first.

Bit Position 7 65 43 21 0 15 14 1312 1110 9 8
Data 1 1 1 01001 101101 11 Hex values = E9 B7

4

LSB MSB

Big Endian Order

The highest order byte that contains bits 8—15 comes first.

Bit Position 15 14 1312 11 10 9 8 7 65 4 321 0
Datla 101101 11 11101001 Hex values = B7 E9

. N

MSB LSB

Notice in the previous figure that the LSB and MSB positioning changes with the byte order. In little
endian order, the LSB and MSB are next to each other in the bit sequence.

Intel is a registered trademark of Intel Corporation.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 197

Creating and Downloading Waveform Files
Understanding Waveform Data

NOTE For 1I/Q data downloads, the signal generator requires big endian order. For each I/Q data
point, the signal generator uses four bytes (two integer values), two bytes for the I point and
two bytes for the Q point.

The byte order, little endian or big endian, depends on the type of processor used with your
development platform. Intel processors and its clones use little endian. (Intel© is a U.S. registered

trademark of Intel Corporation.) Sun™ and Motorola processors use big endian. The Apple PowerPC
processor, while big endian oriented, also supports the little endian order. Always refer to the
processor’s manufacturer to determine the order they use for bytes and if they support both, to
understand how to ensure that you are using the correct byte order.

Development platforms include any product that creates and saves waveform data to a file. This
includes Agilent Technologies Advanced Design System EDA software, C++, MATLAB, and so forth.

The byte order describes how the system processor stores integer values as binary data in memory.
If you output data from a little endian system to a text file (ASCII text), the values are the same as
viewed from a big endian system. The order only becomes important when you use the data in binary
format, as is done when downloading data to the signal generator.

Byte Swapping

While the processor for the development platform determines the byte order, the recipient of the data
may require the bytes in the reverse order. In this situation, you must reverse the byte order before
downloading the data. This is commonly referred to as byte swapping. You can swap bytes either
programmatically or by using the Agilent Technologies IntuiLink for Agilent MXG, PSG, and ESG
Signal Generators software. For the signal generator, byte swapping is the method to change the byte
order of little endian to big endian. For more information on little endian and big endian order, see
“Little Endian and Big Endian (Byte Order)” on page 197.

The following figure shows the concept of byte swapping for the signal generator. Remember that we
can represent data in hex format (4 bits per hex value), so each byte (8 bits) in the figure shows two
example hex values.

0 1 2 3
Little Endian ‘ E9 | B7| 53 | ZA‘ 16-bit integer values (2 bytes = 1 integer value)

| data = bytes 0 and 1
Q data = bytes 2 and 3

Big Endian ‘ B7 E9 ‘ 2A ‘ 53 ‘

Kﬂ_/ H_/
I Q

Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and other countries.

198 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data

To correctly swap bytes, you must group the data to maintain the I and Q values. One common
method is to break the two-byte integer into one-byte character values (0-255). Character values use
8 bits (1 byte) to identify a character. Remember that the maximum unsigned 8-bit value is 255 (28
— 1). Changing the data into character codes groups the data into bytes. The next step is then to
swap the bytes to align with big endian order.

NOTE The signal generator always assumes that downloaded data is in big endian order, so there is
no data order check. Downloading data in little endian order will produce an undesired
output signal.

DAC Input Values

The signal generator uses a 16-bit DAC (digital-to-analog convertor) to process each of the 2-byte
integer values for the I and Q data points. The DAC determines the range of input values required
from the I/Q data. Remember that with 16 bits we have a range of 0-65535, but the signal generator
divides this range between positive and negative values:

e 32767 = positive full scale output
e 0 =0 volts
e —32768 = negative full scale output

Because the DAC’s range uses both positive and negative values, the signal generator requires signed
input values. The following list illustrates the DAC’s input value range.

Voltage DAC Range Input Range Binary Data Hex Data
Vmax 65535 32767 01111111 11111111 TFFF
32768 1 00000000 00000001 0001
0 Volts 32767 0 00000000 00000000 0000
3 32766 -1 11111111 11111111 FFFF
Vmin 0 -32768 10000000 00000000 8000

Notice that it takes only 15 bits (215) to reach the Vmax (positive) or Vmin (negative) values. The
MSB determines the sign of the value. This is covered in “2’s Complement Data Format” on page 201.

Using E443xB ESG DAC Input Values

In this section, the words signal generator with or without a model number refer to an N5182A
Agilent MXG, E4438C ESG, E8267D PSG. The signal generator input values differ from those of the
earlier E443xB ESG models. For the E443xB models, the input values are all positive (unsigned) and

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 199

Creating and Downloading Waveform Files
Understanding Waveform Data

the data is contained within 14 bits plus 2 bits for markers. This means that the E443xB DAC has a
smaller range:

¢ 0 = negative full scale output
e 8192 = 0 volts
¢ 16383 = positive full scale output

Although the signal generator uses signed input values, it accepts unsigned data created for the
E443xB and converts it to the proper DAC values. To download an E443xB files to the signal
generator, use the same command syntax as for the E443xB models. For more information on
downloading E443xB files, see “Downloading E443xB Signal Generator Files” on page 242.

Scaling DAC Values

The signal generator uses an interpolation algorithm (sampling between the I/Q data points) when
reconstructing the waveform. For common waveforms, this interpolation can cause overshoot, which
may exceed the limits of the signal process path’s internal number representation, causing arithmatic
overload. This will be reported as either a data path overload error (N5182A) or a DAC over-range
error condition (E4438C/E8267D). Because of the interpolation, the error condition can occur even
when all the I and Q values are within the DAC input range. To avoid the DAC over-range problem,
you must scale (reduce) the I and Q input values, so that any overshoot remains within the DAC
range.

NOTE Whenever you interchange files between signal generator models, ensure that all scaling is
adequate for that signal generator’s waveform.

Interpolation

<+—>

Interpolation

32767 m T

Max inputvalue _ . __§__

_____ v

Scaling effect

=

DAC over-range No over-range

-32768

There is no single scaling value that is optimal for all waveforms. To achieve the maximum dynamic

200 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data

range, select the largest scaling value that does not result in a DAC over-range error. There are two
ways to scale the 1I/Q data:

¢ Reduce the input values for the DAC.
¢ Use the SCPI command : RAD o: ARB: RSCal i ng <val > to set the waveform amplitude as a
percentage of full scale.

NOTE The signal generator factory preset for scaling is 70%. If you reduce the DAC input values,
ensure that you set the signal generator scaling (:RADio:ARB:RSCaling) to an appropriate
setting that accounts for the reduced values.

To further minimize overshoot problems, use the correct FIR filter for your signal type and adjust
your sample rate to accommodate the filter response.

NOTE FIR filter capability is only available on the E4438C with Option 001/601 or 002/602 and on
the E8267D with Option 601 or 602.

2’s Complement Data Format

The signal generator requires signed values for the input data. For binary data, two’s complement is
a way to represent positive and negative values. The most significant bit (MSB) determines the sign.

¢ 0 equals a positive value (01011011 = 91 decimal)
¢ 1 equals a negative value (10100101 = -91 decimal)

Like decimal values, if you sum the binary positive and negative values, you get zero. The one
difference with binary values is that you have a carry, which is ignored. The following shows how to
calculate the two’s complement using 16-bits. The process is the same for both positive and negative
values.

Convert the decimal value to binary.

23710 = 01011100 10011110

Notice that 15 bits (0-14) determine the value and bit 16 (MSB) indicates a positive value.
Invert the bits (1 becomes 0 and 0 becomes 1).

10100011 01100001
Add one to the inverted bits. Adding one makes it a two’s complement of the original binary value.

10100011 01100001
+ 00000000 00000001
10100011 01100010

The MSB of the resultant is one, indicating a negative value (-23710).
Test the results by summing the binary positive and negative values; when correct, they produce zero.

01011100 10011110
+ 10100011 01100010
00000000 00000000

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 201

Creating and Downloading Waveform Files
Understanding Waveform Data

I and Q Interleaving

When you create the waveform data, the I and Q data points typically reside in separate arrays or
files. The signal generator requires a single I/Q file for waveform data playback. The process of
interleaving creates a single array with alternating I and Q data points, with the Q data following the
I data. This array is then downloaded to the signal generator as a binary file. The interleaved file
comprises the waveform data points where each set of data points, one I data point and one Q data
point, represents one I/Q waveform point.

NOTE The signal generator can accept separate I and Q files created for the earlier E443xB ESG
models. For more information on downloading E443xB files, see “Downloading E443xB Signal
Generator Files” on page 242.

The following figure illustrates interleaving I and Q data. Remember that it takes two bytes (16 bits)
to represent one I or Q data point.

MSB LSB MSB LSB

¥ ¥ P

|Data Binary 11001010 01110110 01110111 00111110
Hex CA 76 7 3E

QData Binary 11101001 11001010 01011110 01110010
Hex E9 CA 5E 72

Interleaved Binary Data

Waveform data point Waveform data point
A N
- N I
11001010 01110110 11101001 11001010 01110111 00111110 01011110 01110010
- AN NG AN J
~ ~ ~ ~
| Data Q Data | Data Q Data

Interleaved Hex Data

Waveform Waveform
data point data point
A AL
e A

r A
CA 76 E9 CA 77 3E 5E 72

e e e

| Data Q Data |Data Q Data

202 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Structure

Waveform Structure

To play back waveforms, the signal generator uses data from the following three files:

¢ File header
* Marker file
e 1/Q file

All three files have the same name, the name of the I/Q data file, but the signal generator stores
each file in its respective directory (headers, markers, and waveform). For information on file
extractions, see “Commands for Downloading and Extracting Waveform Data” on page 216.

File Header

The file header contains settings for the ARB modulation format such as sample rate, marker polarity,
I/Q modulation attenuator setting and so forth. When you create and download I/Q data, the signal
generator automatically creates a file header with all saved parameters set to unspecified. With
unspecified header settings, the waveform either uses the signal generator default settings, or if a
waveform was previously played, the settings from that waveform. Ensure that you configure and save
the file header settings for each waveform.

NOTE If you have no RF output when you play back a waveform, ensure that the marker RF
blanking function has not been set for any of the markers. The marker RF blanking function
is a header parameter that can be inadvertently set active for a marker by a previous
waveform. To check for and turn RF blanking off manually, refer to “Configuring the
Pulse/RF Blank (Agilent MXG)” on page 293 and “Configuring the Pulse/RF Blank
(ESG/PSG)” on page 293.

Marker File

The marker file uses one byte per I/Q waveform point to set the state of the four markers either on
(1) or off (0) for each I/Q point. When a marker is active (on), it provides an output trigger signal to
the rear panel EVENT 1 connector (Marker 1 only) or and the AUX IO, event 2 connector pin
(Markers 1, 2, 3, or 4), that corresponds to the active marker number. (For more information on
active markers and their output trigger signal location, refer to your signal generator’s User’s Guide.)
Because markers are set at each waveform point, the marker file contains the same number of bytes
as there are waveform points. For example, for 200 waveform points, the marker file contains 200
bytes.

Although a marker point is one byte, the signal generator uses only bits 0-3 to configure the
markers; bits 4-7 are reserved and set to zero. The following example shows a marker byte.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 203

Creating and Downloading Waveform Files
Waveform Structure

4 3 2 1 Marker Number Position
Marker Byte 0000 1 011

Reserved

Example of Setting a Marker Byte

Binary 0000 0101
Hex 05
Sets markers 1 and 3 on for a waveform point

The following example shows a marker binary file (all values in hex) for a waveform with 200 points.
Notice the first marker point, Of , shows all four markers on for only the first waveform point.

00000000: OFf 0L 0l 0l 0l 01 0l oL 01 01 0l ol o1 a1 oL 01 Of = Allmarkers on
00000010: 01 01 01 01 01 01 01 01 01 01 01 61 01 01 01 01 (97 = Marker 1 on
00000020: 01 01 0l 0l 0l 01 0l oL 01 01 0l 0L 01 al ol o0l

00000030: 01 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 = Markers 1 and 3 on
00000040: 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 Q4 = Marker 3 on
00000050: 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05
00000060z 05 05 05 05 04 04 04 04 04 04 04 04 04 04 04 04
00000070: 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04
00000080: 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04
00000090: 04 04 04 04 04 04 00 00 00 00 00 OO 00 00 00 00
000000a0: 00 00 00 00 00 OO0 OO0 OO0 OO 00 00 OO 00 00 00 00
000000L0: 00 00 00 00 OO0 OO0 OO0 OO0 OO 00 OO0 OO 00 00 00 00
ooooooco: oo oo oo oo o0 oo oo oo [

00 = No active markers

If you create your own marker file, its name must be the same as the waveform file. If you download
I/Q data without a marker file, the signal generator automatically creates a marker file with all
points set to zero. For more information on markers, see the User’s Guide.

NOTE Downloading marker data using a file name that currently resides on the signal generator
overwrites the existing marker file without affecting the I/Q (waveform) file. However,
downloading just the I/Q data with the same file name as an existing I/Q file also overwrites
the existing marker file setting all bits to zero.

204 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Structure

1/7Q File

The 1/Q file contains the interleaved I and Q data points (signed 16-bit integers for each I and Q
data point). Each I/Q point equals one waveform point. The signal generator stores the I/Q data in
the waveform directory.

NOTE If you download I/Q data using a file name that currently resides on the signal generator, it
also overwrites the existing marker file setting all bits to zero and the file header setting all
parameters to unspecified.

Waveform

A waveform consists of samples. When you select a waveform for playback, the signal generator loads
settings from the file header. When the ARB is on, it creates the waveform samples from the data in
the marker and I/Q (waveform) files. The file header, while required, does not affect the number of
bytes that compose a waveform sample. One sample contains five bytes:

I/Q Data + Marker Data = 1 Waveform Sample
2 bytes| 2 bytes Q lbyte (8 bits) 5 bytes
(16 bits) (16 bits) Bits 4—7 reserved—Bits 0-3 set

To create a waveform, the signal generator requires a minimum of 60 samples. To help minimize
signal imperfections, use an even number of samples (for information on waveform continuity, see
“Waveform Phase Continuity” on page 206). When you store waveforms, the signal generator saves
changes to the waveform file, marker file, and file header.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 205

Creating and Downloading Waveform Files
Waveform Phase Continuity

Waveform Phase Continuity

Phase Discontinuity, Distortion, and Spectral Regrowth

The most common arbitrary waveform generation use case is to play back a waveform that is finite
in length and repeat it continuously. Although often overlooked, a phase discontinuity between the
end of a waveform and the beginning of the next repetition can lead to periodic spectral regrowth
and distortion.

For example, the sampled sinewave segment in the following figure may have been simulated in
software or captured off the air and sampled. It is an accurate sinewave for the time period it
occupies, however the waveform does not occupy an entire period of the sinewave or some multiple
thereof. Therefore, when repeatedly playing back the waveform by an arbitrary waveform generator, a
phase discontinuity is introduced at the transition point between the beginning and the end of the
waveform.

Repetitions with abrupt phase changes result in high frequency spectral regrowth. In the case of
playing back the sinewave samples, the phase discontinuity produces a noticeable increase in
distortion components in addition to the line spectra normally representative of a single sinewave.

Sampled Sinewave with Phase Discontinuity

~ -
.J_.? \\ .f.? \\ ‘J_/’
iy
Phase 0T » "\
\ discontinuity * i \
\ ' \
A
. Y : / =, i
: 5 . / \ /
. Y ' é.f b ¢
' e} | O
' N t N ’
: i ,,«f ' kY '
. S, . =
< >

Waveform length

Avoiding Phase Discontinuities

You can easily avoid phase discontinuities for periodic waveforms by simulating an integer number of
cycles when you create your waveform segment.

206 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Phase Continuity

NOTE If there are N samples in a complete cycle, only the first N-1 samples are stored in the
waveform segment. Therefore, when continuously playing back the segment, the first and Nth
waveform samples are always the same, preserving the periodicity of the waveform.

By adding off time at the beginning of the waveform and subtracting an equivalent amount of off
time from the end of the waveform, you can address phase discontinuity for TDMA or pulsed periodic
waveforms. Consequently, when the waveform repeats, the lack of signal present avoids the issue of
phase discontinuity.

However, if the period of the waveform exceeds the waveform playback memory available in the
arbitrary waveform generator, a periodic phase discontinuity could be unavoidable. N5110B Baseband
Studio for Waveform Capture and Playback alleviates this concern because it does not rely on the
signal generator waveform memory. It streams data either from the PC hard drive or the installed
PCI card for N5110B enabling very large data streams. This eliminates any restrictions associated
with waveform memory to correct for repetitive phase discontinuities. Only the memory capacity of
the hard drive or the PCI card limits the waveform size.

Sampled Sinewave with No Discontinuity

b e

Y /
13 4
3 4

/

- 3 .)f-\'.
e o
Ll - -
s oY & A Fa
J \ # . /

,
-f"—
e
o
\"‘\.

! Added sample by
Y Ao Y s

"
Ll

FCEEEEEEEE R

Waveform length

The following figures illustrate the influence a single sample can have. The generated 3-tone test
signal requires 100 samples in the waveform to maintain periodicity for all three tones. The
measurement on the left shows the effect of using the first 99 samples rather than all 100 samples.
Notice all the distortion products (at levels up to —35 dBc) introduced in addition to the wanted
3-tone signal. The measurement on the right shows the same waveform using all 100 samples to

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 207

Creating and Downloading Waveform Files
Waveform Phase Continuity

maintain periodicity and avoid a phase discontinuity. Maintaining periodicity removes the distortion
products.

Phase Discontinuity Phase Continuity

3-tone - 20 MHz Bandwidth 3-tone - 20 MHz Bandwidth
Measured distortion = 35 dBc Measured distortion = 86 dBc

208 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Waveform Memory

Creating and Downloading Waveform Files
Waveform Memory

The signal generator provides two types of memory, volatile and non-volatile. You can download files

to either memory type.

NOTE On the Agilent MXG the non-volatile memory is referred to as internal media and external

media.

Volatile

Random access memory that does not survive cycling of the signal generator
power. This memory is commonly referred to as waveform memory (WFM1) or

waveform playback memory. To play back waveforms, they must reside in volatile
memory. The following file types share this memory:

Table 5-1 Signal Generators and Volatile Memory Types

Volatile Memory Type Model of Signal Generator
N5182A with E4438C with E8267D Option All Other
Option 651, Option 001/601 601 or 602 models
652, or 654 or 002/602
/Q X X b'e b'e
Marker X X X X
File header X X X X
User PRAM - X X -

Non-volatile

Storage memory where files survive cycling the signal generator power. Files
remain until overwritten or deleted. To play back waveforms after cycling the
signal generator power, you must load waveforms from non-volatile waveform
memory (NVWFM) to volatile waveform memory (WFM1). The following file types
share this memory:

Table 5-2 Signal Generators and Non-Volatile Memory Types

Non- Volatile Memory Type Model of Signal Generator
N5182A with E4438C with E8267D Option All Other
Option 651, Option 001/601 601 or 602 models
652, or 654 or 002/602
1/Q X X X X
Marker X X X X
File header X X X X
Sweep List bq bq X X

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

209

Creating and Downloading Waveform Files
Waveform Memory

Table 5-2 Signal Generators and Non-Volatile Memory Types

Non- Volatile Memory Type Model of Signal Generator

User Data X X X X
User PRAM - X X -
Instrument State X X X X
Waveform Sequences X X X -
(multiple I/Q files played together)

210 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Memory

The following figure shows the locations within the signal generator for volatile and non-volatile
waveform data.

NOTE The volatile memory of the signal generator can also be referred to as “WFM1” and “BBG1”
memory.

In the Agilent MXG the non-volatile memory can be referred to as the internal media or
external media. For more information, refer to the User’s Guide.

Root directory

—-J Agilent MXG (Only): External Media
USER [Non-volatile waveform data? 2
\
E443xB Volatile1 E443xB Non-volatile : - . -
waveform data waveform datal __'J
_ | _
_'__J 'HJ _'_J _-'J HEADER MARKERS ~ WAVEFORM SECUREWAVE
ARBI ARBQ NVARBI NVARBQ
Y Non-volatile waveform data (Internal Media)* 2
Non-volatile y

Waveform sequences

J d o o

_-'.J HEADER MARKERS WAVEFORM SECUREWAVE

SEQ

y

Volatile waveform directory

_

BBG1

Y Volatile waveform data

J oo

HEADER MARKERS WAVEFORM SECUREWAVE

1The ARBI , ARBQ NVARBI , NVARQ and SECUREWAVE directories are “virtual” directories and can be used for “viewing” files only
(i.e. they have no storage values on their own). For exceptions, refer to “Non- Volatile Memory (Agilent MXG)” on
page 212.

2The Agilent MXG uses an optional “External Media” to store non-volatile waveform data using a similar directory structure (i.e. HEADER,
MARKERS, WAVEFORM and SECUREWAVE).

3The Agilent MXG internal non-volatile memory is referred to as “Internal Media”.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 211

Creating and Downloading Waveform Files
Waveform Memory

Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For example, a waveform file
with 60 samples (the minimum number of samples) has 300 bytes (5 bytes per sample x 60 samples),
but the signal generator allocates 1024 bytes of memory. If a waveform is too large to fit into 1024
bytes, the signal generator allocates additional memory in multiples of 1024 bytes. For example, the
signal generator allocates 3072 bytes of memory for a waveform with 500 samples (2500 bytes).

3 x 1024 bytes = 3072 bytes of memory

As shown in the examples, waveforms can cause the signal generator to allocate more memory than
what is actually used, which decreases the amount of available memory.

NOTE In the first block of data of volatile memory that is allocated for each waveform file, the file
header requires 512 bytes (N5182A) or 256 bytes (E4438C/E8267D).

Non-Volatile Memory (Agilent MXG)

NOTE If the Agilent MXG’s external USB flash memory port is used, the USB flash memory can
provide actual physical storage of non-volatile data in the SECUREWAVE directory versus the
“virtual” only data.

ARB waveform encryption of proprietary information is supported on the external
non-volatile USB flash memory.

On the N5182A, non-volatile files are stored on the non-volatile internal signal generator memory
(internal media) or to an USB external media, if available.

The Agilent MXG non-volatile internal memory is allocated according to a Microsoft compatible file
allocation table (FAT) file system. The Agilent MXG signal generator allocates non-volatile memory in
clusters according to the drive size (see Table 5-3 on page 213). For example, referring to Table 5-3
on page 213, if the drive size is 15 MB and if the file is less than or equal to 4K bytes, the file uses
only one 4 KB cluster of memory. For files larger than 4 KB, and with a drive size of 15 MB, the
signal generator allocates additional memory in multiples of 4KB clusters. For example, a file that
has 21,5638 bytes consumes 6 memory clusters (24,000 bytes).

For more information on default cluster sizes for FAT file structures, refer to Table 5-3 on page 213
and to http:/support.microsoft.com,.

Microsoft is a registered trademark of Microsoft Corporation.

212 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Table 5-3 Drive Size (logical volume)

Drive Size (logical volume)

Cluster Size (Bytes)
(Minimum Allocation Size)

0 MB - 15 MB 4K
16 MB - 127 MB 2K
128 MB - 2556 MB 4K
2566 MB - 511 MB 8K
512 MB - 1023 MB 16K
1024 MB - 2048 MB 32K
2048 MB - 4096 MB 64K
4096 MB - 8192 MB 128K
8192 MB - 16384 MB 256K

Non-Volatile Memory (ESG/PSG)

The ESG/PSG signal generators allocate non-volatile memory in blocks of 512 bytes. For files less
than or equal to 512 bytes, the file uses only one block of memory. For files larger than 512 bytes,
the signal generator allocates additional memory in multiples of 512 byte blocks. For example, a file

that has 21,538 bytes consumes 43 memory blocks (22,016 bytes).

Creating and Downloading Waveform Files
Waveform Memory

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

213

Creating and Downloading Waveform Files
Waveform Memory

Memory Size

NOTE The Agilent MXG’s baseband generator (BBG) can be used to play waveforms, but not to
create them. The ESG and PSG’s baseband generator (BBG) can be used to create and play
waveforms.

The amount of available memory, volatile and non-volatile, varies by option and the size of the other
files that share the memory. When we refer to waveform files, we state the memory size in samples
(one sample equals five bytes). The ESG and PSG baseband generator (BBG) options (001/601 and
002/602) and the Agilent MXG baseband generator (BBG) Option (651, 652, and 654) contain the
waveform playback memory. Refer to Tables 5-4 on page 214 through Table 5-6 on page 215 for the
maximum available memory.

Volatile and Non-Volatile Memory (N5182A)

Table 5-4 N5182A Volatile (WFM1) and Non-Volatile (NVWFM) Memory

Volatile (WFM1) Memory Non- Volatile (NVWFM) Memory
Option Size Option Size
N5182A%
651/652/654 (BBG) 8 MSa (40 MB) Standard (N5182A) 100 MSa (512 MB)
019 64 MSa (320 MB) USB memory stick user determined

a.0n the N5182A, 512 bytes is reserved for each waveform’s header file (i.e. The largest waveform that could be
played with a N5182A with Option 019 (320 MB) is: 320 MB — 512 = 319,999,488 MB.)

214 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Memory

Volatile Memory and Non-Volatile Memory (E4438C and E8267D Only)

NOTE When considering volatile memory, it is not necessary to keep track of marker data, as this
memory is consumed automatically and proportionally to the I/Q data created (i.e. 1 marker
byte for every 4 bytes of 1/Q data).

On the E4438C and E8267D, the fixed file system overhead on the signal generator is used to store
directory information. When calculating the available volatile memory for waveform files it is
important to consider the fixed file system overhead for the volatile memory of your signal generator.

Table 5-5 Fixed File System Overhead

Volatile (WFM1) Memory and Fixed File Overhead

Option Size Maximum Memory (Bytes) Used for Memory Available
Number of Fixed File System for Waveform
Files Overhead? Samples

(MaxNumFiles) | 16 + (44 x MaxNumFiles)]

E4438C and E8267D

001/601 (BBG) 8 MSa (40 MB) 1024 46,080 8,377,088 Samples
002 (BBG) 32 MSa (160 MB) 4096 181,248 33,509,120 Samples
602 (BBG) 64 MSa (320 MB) 8192 361,472 67,018,496 Samples

a.The expression [16 + [44 x MaxNumFiles]) has been rounded up to nearest memory block (1024 bytes). (To find the I/Q waveform sample
size, this resulting value needs to be divided by 4.)

Table 5-6 E4438C and E8267D Non-Volatile (NVWFM) Memory

Non- Volatile (NVWFM) Memory

Option Size

E4438C and E8267D

Standard 3 MSa (15 MB)

005 (Hard disk) 1.2 GSa (6 GB)

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 215

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Commands for Downloading and Extracting Waveform Data

You can download I/Q data, the associated file header, and marker file information (collectively called
waveform data) into volatile or non-volatile memory. For information on waveform structure, see
“Waveform Structure” on page 203.

CAUTION To turn off the ARB remotely, send: : SOURce: RAD o0: ARB: STATe CFF.

The signal generator provides the option of downloading waveform data either for extraction or not
for extraction. When you extract waveform data, the signal generator may require it to be read out in
encrypted form. The SCPI download commands determine whether the waveform data is extractable.

If you use SCPI commands to download waveform data to be extracted later, you must use the
MEM DATA: UNPRot ect ed command. If you use FTP commands, no special command syntax is
necessary.

NOTE On the N5182A the : MEM DATA: UNPRot ect ed command is not required to be able to extract
files (i.e. use : MEM DATA). For more information, refer to the SCPI Command Reference.

You can download or extract waveform data created in any of the following ways:

¢ with signal simulation software, such as MATLAB or Agilent Advanced Design System (ADS)
* with advanced programming languages, such as C++, VB or VEE

* with Agilent Signal Studio software

* with the signal generator

Waveform Data Encryption

You can download encrypted waveform data extracted from one signal generator into another signal
generator with the same option or software license for the modulation format. You can also extract
encrypted waveform data created with software such as MATLAB or ADS, providing the data was
downloaded to the signal generator using the proper command.

When you generate a waveform from the signal generator’s internal ARB modulation format
(ESG/PSG only), the resulting waveform data is automatically stored in volatile memory and is
available for extraction as an encrypted file.

When you download an exported waveform using a Agilent Signal Studio software product, you can
use the FTP process and the securewave directory or SCPI commands, to extract the encrypted file
to the non-volatile memory on the signal generator. Refer to “File Transfer Methods” on page 218.

Encrypted 1/Q Files and the Securewave Directory

The signal generator uses the secur ewave directory to perform file encryption (extraction) and
decryption (downloads). The secur ewave directory is not an actual storage directory, but rather a
portal for the encryption and decryption process. While the secur ewave directory contains file
names, these are actually pointers to the true files located in signal generator memory (volatile or
non-volatile). When you download an encrypted file, the secur ewave directory decrypts the file and

216 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

unpackages the contents into its file header, I/Q data, and marker data. When you extract a file, the
secur ewave directory packages the file header, I/Q data, and marker data and encrypts the waveform
data file. When you extract the waveform file (I/Q data file), it includes the other two files, so there
is no need to extract each one individually.

The signal generator uses the following secur ewave directory paths for file extractions and encrypted
file downloads:

Volatile /user/bbgl/securewave/file_name or swfm.file_name

Non- volatile Juser/securewave or snvwfmlfile_name

NOTE To extract files (other than user-created I/Q files) and to download encrypted files, you must
use the securewave directory. If you attempt to extract previously downloaded encrypted
files (including Signal Studio downloaded files or internally created signal generator files
(ESG/PSG only)) without using the securewave directory, the signal generator generates an
error and displays:

ERRCR 221, Access Deni ed.

Encrypted 1/Q Files and the Securewave Directory (Agilent MXG Only)

CAUTION Attributes of files stored on the Agilent MXG’s USB external storage media cannot be
changed (e.g. data that has been stored as read-only cannot be changed to a writeable
format).

NOTE Agilent MXG non-volatile memory stores encrypted files in the encrypted format.

If the user wants to be able to have greater flexibility with the stored waveform formats, it is
recommended that the files are stored internally in the signal generator. So, if the waveform data is
being stored to the external flash memory, it is important to consider the type of data extraction
format that best fits the application:

* : MEMory: DATA (waveform data cannot be read as encrypted data)

NOTE On the N5182A the : MEM DATA: UNPRot ect ed command is not required to be able to extract
files (i.e. use : MEM DATA). For more information, refer to the SCPI Command Reference.

¢ : MEMory: DATA: UNPRot ect ed or FTP commands (waveform data can be read as encrypted or
unencrypted)

¢ User un-encrypted waveform data (can only be read as unencrypted)

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 217

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

File Transfer Methods

¢ SCPI using VXI-11 (VMEbus Extensions for Instrumentation as defined in VXI-11)
e SCPI over the GPIB or RS 232

¢ SCPI with sockets LAN (using port 5025)

¢ File Transfer Protocol (FTP)

SCPI Command Line Structure

The signal generator expects to see waveform data as block data (binary files). The IEEE standard
488.2-1992 section 7.7.6 defines block data. The following example shows how to structure a SCPI
command for downloading waveform data (#ABC represents the block data):

: MMEM DATA "<fi | e_name>", #ABC

"<file_name>" the I/Q file name and file path within the signal generator

indicates the start of the data block

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes to follow in C
C the actual binary waveform data

The following example demonstrates this structure:
MVEM DATA |“ WFML: y_fi e”|, #13 |240| 129%8! 4&07#89* YO@ . . .

| | |
C

file_name A B
WFM1: the file path
ny_file the I/Q file name as it will appear in the signal generator’s memory catalog
indicates the start of the data block
3 B has three decimal digits
240 240 bytes of data to follow in C
12%5! 4&07#89* YO@ . .. the ASCII representation of some of the binary data downloaded to the

signal generator, however not all ASCII values are printable

218 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Commands and File Paths for Downloading and Extracting Waveform Data

NOTE The “@ command syntax for downloading and extracting encrypted or unencrypted files, is
demonstrated in the following tables (Table 5-8, “Downloading Encrypted Files for No
Extraction (Extraction allowed on the Agilent MXG Only),” on page 220 through Table 5-12,
“Extracting Encrypted Waveform Data,” on page 221). But, the “@ method is typically not
the recommended or preferred command syntax and is shown for reference purposes only.
Example: The command syntax: MVEM DATA " SNVWW¥M <fi | e_nane>", <bl ockdat a>, is
recommended, rather than this version: MVEM DATA "fi | e_name@NVWFM', <bl ockdat a>.

You can download or extract waveform data using the commands and file paths in the following
tables:

¢ Table 5-7, “Downloading Unencrypted Files for No Extraction (Extraction allowed on the Agilent
MXG Only),” on page 219

¢ Table 5-8, “Downloading Encrypted Files for No Extraction (Extraction allowed on the Agilent
MXG Only),” on page 220

e Table 5-9, “Downloading Unencrypted Files for Extraction,” on page 220

e Table 5-11, “Downloading Encrypted Files for Extraction,” on page 221

e Table 5-12, “Extracting Encrypted Waveform Data,” on page 221

Table 5-7 Downloading Unencrypted Files for No Extraction (Extraction allowed on the Agilent MXG? Only)

Download Method/ Command Syntax Options
Memory Type

SCPI/volatile memory MVEM DATA "WFML: <fi | e_name>", <bl ockdat a>
MVEM DATA "MKR1: <fi | e_name>", <bl ockdat a>
MVEM DATA "HDR1: <fi | e_name>", <bl ockdat a>

SCPI/volatile memory with MVEM DATA "user/ bbgl/ wavef orni <f i | e_name>", <bl ockdat a>
full directory path MVEM DATA "user/ bbgl/ mar ker s/ <fi | e_nanme>", <bl ockdat a>
MVEM DATA "user/ bbgl/ header/ <fi | e_nanme>", <bl ockdat a>

SCPI/non-volatile memory MVEM DATA "NVWWFM <fi | e_nane>", <bl ockdat a>
MVEM DATA "NVMKR <fi | e_nane>", <bl ockdat a>
MVEM DATA "NVHDR <fi | e_nane>", <bl ockdat a>

SCPI/non-volatile memory MVEM DATA / user/ wavef orni <f i | e_nane>", <bl ockdat a>
with full directory path MVEM DATA / user/ mar ker s/ <fi | e_name>", <bl ockdat a>
MVEM DATA / user/ header / <fi | e_name>", <bl ockdat a>

a.Refer to note on page 216.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 219

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 5-8 Downloading Encrypted Files for No Extraction (Extraction allowed on the Agilent MXG2 Only)

Download Method
/Memory Type

Command Syntax Options

SCPI/volatile memory

MVEM DATA "user/ bbgl/ secur ewave/ <fil e_nanme>", <bl ockdat a>
MVEM DATA " SWFML: <fi | e_nane>", <bl ockdat a>
MVEM DATA "fi | e_nane@WFML" <blockdata>

SCPI/non-volatile memory

MVEM DATA "user/secur ewave/ <fil e_nanme>", <bl ockdat a>
MVEM DATA " SNVWAFM <fi | e_nanme>", <bl ockdat a>
MVEM DATA "fil e_nane@NVWFM', <bl ockdat a>

a.Refer to note on page 216.

Table 5-9 Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memory?®

MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed

"/ user/ bbgl/ wavef orni fil e_name", <bl ockdat a>
"/ user/bbgl/ markers/file_name", <bl ockdat a>
"/ user/bbgl/ header/fil e_nane", <bl ockdat a>
"WFML: fi | e_nane", <bl ockdat a>

"MKRL: fil e_name", <bl ockdat a>

"HDRL: fil e_name", <bl ockdat a>

"fil e_name@¥ML", <bl ockdat a>
"file_name@KRL", <bl ockdat a>
"file_name@DRL", <bl ockdat a>

SCPI/non-volatile
memory?®

MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed

"/user/wavefornifil e_nanme", <bl ockdat a>
"/ user/ markers/file_name", <bl ockdat a>
"/ user/ header/fil e_nane", <bl ockdat a>
"NVWFM fil e_nane", <bl ockdat a>

"NVMKR fil e_nane", <bl ockdat a>

"NVHDR fi | e_nane", <bl ockdat a>

"fil e_name@W\FM', <bl ockdat a>

"fil e_name@WWKR', <bl ockdat a>

"fil e_name@WHDR', <bl ockdat a>

FTP/volatile memory® put <file_name> /user/bbgl/ waveforni <fil e_nanme>
put <file_name> /user/bbgl/ markers/<file_nane>
put <file_name> /user/bbgl/ header/<fil e_nane>

FTP/non-volatile put <file_name> /user/waveforn <file_name>

memory® put <file_name> /user/ markers/<file_nane>
put <file_name> /user/header/<fil e_nane>

a.0n the N5182A the : MEM DATA: UNPRot ect ed command is not required to be able to extract files (i.e. use
information, refer to the SCPI Command Reference.
b. See “FTP Procedures” on page 223.

: MEM DATA). For more

220

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 5-10 Extracting Unencrypted 1/Q Data

Download Command Syntax Options
Method/Memory
Type
SCPI/volatile MVEM DATA? "/ user/ bbgl/ wavef or mi <fil e_name>"
memory MVEM DATA? "WFML: <f i | e_nane>"
MVEM DATA? "<fil e_name>@V¥M"
SCPI/non-volatile MVEM DATA? "/ user/wavef orn <fil e_nanme>"
memory MVEM DATA? "NWWFM <fi | e_name>"
MVEM DATA? "<fil e_nane>@WVWM
FTP/volatile get /user/bbgl/waveform <file_name>
memory? get /user/bbgl/ markers/<file_nane>
get /user/bbgl/ header/<file_nane>
FTP/non-volatile get /user/waveforn <fil e_nane>
memory? get /user/ markers/<file_nane>

get /user/header/<fil e_name>

a. See “FTP Procedures” on page 223.

Table 5-11 Downloading Encrypted Files for Extraction

Download Command Syntax Options
Method/Memory
Type
SCPI/volatile? MEM DATA: UNPRot ect ed "/ user/ bbgl/ securewave/ fil e_nanme", <bl ockdat a>
memory MEM DATA: UNPRot ect ed "SWML: fi | e_nane", <bl ockdat a>
MEM DATA: UNPRot ect ed "fi | e_name@WML" ,<blockdata>
SCPI/non-volatile MEM DATA: UNPRot ect ed "/ user/ secur ewave/ fil e_name", <bl ockdat a>
memory? MEM DATA: UNPRot ect ed " SNWWM fi | e_name", <bl ockdat a>

MEM DATA: UNPRot ect ed "fi | e_name @NVWWFM <blockdata>

FTP/volatile put <file_name> /user/bbgl/securewave/ <fil e_nane>
memolryb

FTP/non-volatile put <file_name> /user/securewave/ <fil e_name>
memolryb

a.0n the N5182A the : MEM DATA: UNPRot ect ed command is not required to be able to extract files (i.e. use : MEM DATA). For more
information, refer to the SCPI Command Reference.
b. See “FTP Procedures” on page 223.

Table 5-12 Extracting Encrypted Waveform Data

Download Command Syntax Options
Method/Memory
Type
SCPI/volatile MVEM DATA? "/ user/ bbgl/ secur enave/ fil e_nane"
memory MVEM DATA? "SWFML: fil e_nane"
MVEM DATA? “fil e_name@WML"

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 221

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 5-12 Extracting Encrypted Waveform Data

Download Command Syntax Options
Method/Memory
Type
SCPI/non-volatile MVEM DATA? "/ user/ secur enave/ fil e_name"
memory MVEM DATA? " SNWAFM fi | e_name"”

MVEM DATA? “fil e_name@NVWWFM'
FTP/volatile get /user/bbgl/securewave/ <fil e_name>
memory?
FTP/non- volatile get /user/securewave/ <file_nane>
memory?

a. See “FTP Procedures” on page 223.

222 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

FTP Procedures

There are three ways to FTP files:

¢ use Microsoft’s® Internet Explorer FTP feature

¢ use the PC’s or UNIX command window

e use the signal generator’s internal web server following the firmware requirements in the table
below

NOTE Older versions of signal generator firmware did not have web server capabilities.

Signal Generator Firmware Version
N518xA = A.01.00

E44x8C = C.03.10
E82x7D All

Using Microsoft’s Internet Explorer
1. Enter the signal generator’s hostname or IP address as part of the FTP URL.

ftp://<host name> or <IP address>
2. Press Enter on the keyboard or Go from the Internet Explorer window.
The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Using the Command Window (PC or UNIX)

This procedure downloads to non-volatile memory. To download to volatile memory, change the file
path.

1. From the PC command prompt or UNIX command line, change to the destination directory for the
file you intend to download.

2. From the PC command prompt or UNIX command line, type ftp <i nstrunment nane>. Where
i nstrunent nane is the signal generator’s hostname or IP address.

3. At the User: prompt in the ftp window, press Enter (no entry is required).
At the Passwor d: prompt in the ftp window, press Enter (no entry is required).

At the ftp prompt, type:
put <file_name> /user/waveforni <file_namel>

where <fil e_name> is the name of the file to download and <fil e_nanel> is the name
designator for the signal generator’s /user/waveforni directory.

e If a marker file is associated with the data file, use the following command to download it to
the signal generator:

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 223

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

put <marker file_name> /user/narkers/<file_namel>

where <marker file_name> is the name of the file to download and <file_namel> is the name
designator for the file in the signal generator’s /user/ narkers/ directory. Marker files and
the associated I/Q waveform data have the same name.

6. At the ftp prompt, type: bye
7. At the command prompt, type: exit

Using the Signal Generator’s Internal Web Server
1. Enter the signal generator’s hostname or IP address in the URL.

hitp://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of the window.
The signal generator files appear in the web browser’s window.

3. Drag and drop files between the PC and the browser’s window

For more information on the web server feature, see the Programming Guide for the signal
generator.

224 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Creating Waveform Data

Creating Waveform Data

This section examines the C++ code algorithm for creating I/Q waveform data by breaking the
programming example into functional parts and explaining the code in generic terms. This is done to
help you understand the code algorithm in creating the I and Q data, so you can leverage the concept
into your programming environment. The SCPI Command Reference, contains information on how to
use SCPI commands to define the markers (polarity, routing, and other marker settings). If you do
not need this level of detail, you can find the complete programming examples in “Programming
Examples” on page 245.

You can use various programming environments to create ARB waveform data. Generally there are
two types:

¢ Simulation software— this includes MATLAB, Agilent Technologies EESof Advanced Design
System (ADS), Signal Processing WorkSystem (SPW), and so forth.

¢ Advanced programming languages—this includes, C++, VB, VEE, MS Visual Studio.Net, Labview,
and so forth.

No matter which programming environment you use to create the waveform data, make sure that the
data conforms to the data requirements shown on page 195. To learn about I/Q data for the signal
generator, see “Understanding Waveform Data” on page 196.

Code Algorithm

This section uses code from the C++ programming example “Importing, Byte Swapping, Interleaving,
and Downloading I and Q Data—Big and Little Endian Order” on page 263 to demonstrate how to
create and scale waveform data.

There are three steps in the process of creating an 1/Q waveform:

1. Create the I and Q data.

2. Save the I and Q data to a text file for review.

3. Interleave the I and Q data to make an I/Q file, and swap the byte order for little-endian
platforms.

For information on downloading I/Q waveform data to a signal generator, refer to “Commands and
File Paths for Downloading and Extracting Waveform Data” on page 219 and “Downloading Waveform
Data” on page 232.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 225

Creating and Downloading Waveform Files
Creating Waveform Data

1. Create | and Q data.

The following lines of code create scaled I and Q data for a sine wave. The I data consists of one

period of a sine wave and the Q data consists of one period of a cosine wave.

Line Code—Create I and Q data

1 const int NUVBAMPLES=500;

2 mai n(int argc, char* argv[]);

3 {

4 short idata] NUVBAMPLES] ;

5 short qgdat a] NUVBAMPLES] ;

6 i nt nunsanpl es = NUVBAMPLES,

7 for(int index=0; index<nunsanples; index++);

8 {

9 i dat a[i ndex] =23000 * si n((2*3. 14*i ndex)/ nunsanpl es);

10 gdat a[i ndex] =23000 * cos((2*3. 14*i ndex)/ nunsanpl es) ;

11 }

Line Code Description—Create I and Q data

1 Define the number of waveform points. Note that the maximum number of waveform points that you can set
is based on the amount of available memory in the signal generator. For more information on signal generator
memory, refer to “Waveform Memory” on page 209.

2 Define the main function in C++.

4 Create an array to hold the generated I values. The array length equals the number of the waveform points.
Note that we define the array as type short, which represents a 16-bit signed integer in most C++ compilers.

5 Create an array to hold the generated Q values (signed 16-bit integers).

6 Define and set a temporary variable, which is used to calculate the I and Q values.

226

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code Description—Create I and Q data

7-11 Create a loop to do the following:

® Generate and scale the I data (DAC values). This example uses a simple sine equation, where 2*3.14

equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0-499, creating 500 I data points over one period of the
sine waveform.

— Set the scale of the DAC values in the range of —32768 to 32767, where the values —32768 and 32767
equal full scale negative and positive respectively. This example uses 23000 as the multiplier,

resulting in approximately 70% scaling. For more information on scaling, see “Scaling DAC Values” on
page 200.

NOTE The signal generator comes from the factory with I/Q scaling set to 70%. If you reduce the DAC
input values, ensure that you set the signal generator scaling (: RAD 0: ARB: RSCal i ng) to an
appropriate setting that accounts for the reduced values.

® Generate and scale the Q data (DAC value). This example uses a simple cosine equation, where 2*3.14

equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0-499, creating 500 Q data points over one period of the
cosine waveform.

— Set the scale of the DAC values in the range of —-32767 to 32768, where the values —32767 and 32768
equal full scale negative and positive respectively. This example uses 23000 as the multiplier,

resulting in approximately 70% scaling. For more information on scaling, see “Scaling DAC Values” on
page 200.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 227

Creating and Downloading Waveform Files
Creating Waveform Data

2. Save the I/Q data to a text file to review.

The following lines of code export the I and Q data to a text file for validation. After exporting the
data, open the file using Microsoft Excel or a similar spreadsheet program, and verify that the I and
Q data are correct.

Line Code Description—Saving the I/Q Data to a Text File
12 char *ofile = "c:\\tenp\\iqg.txt";
13 FILE *outfile = fopen(ofile, "w);
14 if (outfile==NULL) perror ("Error opening file to wite");
15 for (i ndex=0; i ndex<nunmsanpl es; i ndex++)
16 {
17 fprintf(outfile, "%, %\ n", idata[index], qdata[index]);
18 }
19 fclose(outfile);
Line Code Description—Saving the I/Q Data to a Text File
12 Set the absolute path of a text file to a character variable. In this example, iq.txt is the file name and *ofile

is the variable name.

For the file path, some operating systems may not use the drive prefix (‘c:’ in this example), or may require
only a single forward slash (/), or both ("/temp/iq.txt")

13 Open the text file in write format.
14 If the text file does not open, print an error message.

15-18 Create a loop that prints the array of generated I and Q data samples to the text file.
19 Close the text file.

228 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Creating Waveform Data

3. Interleave the | and Q data, and byte swap if using little endian order.

This step has two sets of code:

¢ Interleaving and byte swapping I and Q data for little endian order
¢ Interleaving I and Q data for big endian order

For more information on byte order, see “Little Endian and Big Endian (Byte Order)” on page 197.

Line Code—Interleaving and Byte Swapping for Little Endian Order
20 char i gbuffer[NUVBAMPLES* 4] ;
21 for (i ndex=0; i ndex<nunmsanpl es; i ndex++)
22 {
23 short ivalue = idata[index];
24 short qval ue = gdat a[i ndex] ;
25 i gbuf fer[i ndex*4] = (ivalue >> 8) & OxFF;
26 i gbuffer[index*4+1] = ivalue & OxFF;
27 i gbuf fer[index*4+2] = (qval ue >> 8) & OxFF;
28 i gbuf fer[index*4+3] = qval ue & OxFF;
29 }
30 return O;
Line Code Description—Interleaving and Byte Swapping for Little Endian Order
20 Define a character array to store the interleaved I and Q data. The character array makes byte swapping
easier, since each array location accepts only 8 bits (1 byte). The array size increases by four times to
accommodate two bytes of I data and two bytes of Q data.
21-29 Create a loop to do the following:

® Save the current I data array value to a variable.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this condition exists,
replace short with the appropriate object or label that defines a 16-bit integer.

® Save the current Q data array value to a variable.
® Swap the low bytes (bits 0-7) of the data with the high bytes of the data (done for both

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 229

Creating and Downloading Waveform Files

Creating Waveform Data

Line

Code Description—Interleaving and Byte Swapping for Little Endian Order

21-29

the I and Q data), and interleave the I and Q data.

— shift the data pointer right 8 bits to the beginning of the high byte (value >> 8)

Little Endian Order
7 6 54 3 2 1 0 15 14 1312 1110 9 8 BitPosition
11101001 101101 11 Dpata
* ______ > Hex values = E9 B7
Data pointer Data pointer shifted 8 bits

— AND (boolean) the high I byte with OxFF to make the high I byte the value to store in the IQ

array—(ivalue >> 8) & OxFF

15 14 1312 1110 9 8

101101 11 Hexvalue=B7
111111 11 Hexvalue=FF
101101 11 Hexvalue=B7

— AND (boolean) the low I byte with OxFF (walue & OxFF) to make the low I byte the value to store

in the I/Q array location just after the high byte [index * 4 + 1]
| Data in 1/Q Array after Byte Swap (Big Endian Order)

15 14 1312 1110 9 8 7 6 5 4 3 2 1 0 BitPosition
10110111 11101001 Data
Hex value = B7 E9

— Swap the Q byte order within the same loop. Notice that the I and Q data interleave with each loop

cycle. This is due to the I/Q array shifting by one location for each I and Q operation [index * 4 +
nj.

Interleaved 1/Q Array in Big Endian Order

LT 8 T, 0 15 8 T, o Bit Position
1011011111101001 1110010101101011 Data
N U\ J

~ ~

| Data Q Data

230

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code—Interleaving I and Q data for Big Endian Order
20 short i gbuf f er [NUMBAMPLES* 2] ;
21 for (i ndex=0; i ndex<numsanpl es; i ndex++)
22 {
23 i gbuf f er[i ndex*2] = idata[index];
24 i gbuf fer[i ndex*2+1] = qdata[i ndex];
25 }
26 return O;
Line Code Description—Interleaving I and Q data for Big Endian Order
20 Define a 16-bit integer (short) array to store the interleaved I and Q data. The array size increases by two
times to accommodate two bytes of I data and two bytes of Q data.
NOTE In rare instances, a compiler may define short as larger than 16 bits. If this condition exists,
replace short with the appropriate object or label that defines a 16-bit integer.
21-25 Create a loop to do the following:

® Store the I data values to the I/Q array location [index*2].
® Store the Q data values to the I/Q array location [index*2+1].

Interleaved 1/Q Array in Big Endian Order

15. e, 8 T, 0 15 T o0 Bit Position
1011011121211201001 1110010101101011 pata
“) /

~ ~

| Data Q Data

To download the data created in the above example, see “Using Advanced Programming Languages”

on page 23b.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 231

Creating and Downloading Waveform Files
Downloading Waveform Data

Downloading Waveform Data

This section examines methods of downloading I/Q waveform data created in MATLAB (a simulation
software) and C++ (an advanced programming language). For more information on simulation and
advanced programming environments, see “Creating Waveform Data” on page 225.

To download data from simulation software environments, it is typically easier to use one of the free
download utilities (described on page 241), because simulation software usually saves the data to a
file. In MATLAB however, you can either save data to a .mat file or create a complex array. To
facilitate downloading a MATLAB complex data array, Agilent created the Agilent MXG/PSG/ESG
Download Assistant (one of the free download utilities), which downloads the complex data array
from within the MATLAB environment. This section shows how to use the download assistant.

For advanced programming languages, this section closely examines the code algorithm for
downloading I/Q waveform data by breaking the programming examples into functional parts and
explaining the code in generic terms. This is done to help you understand the code algorithm in
downloading the interleaved I/Q data, so you can leverage the concept into your programming
environment. While not discussed in this section, you may also save the data to a binary file and use
one of the download utilities to download the waveform data (see “Using the Download Utilities” on
page 241).

If you do not need the level of detail this section provides, you can find complete programming
examples in “Programming Examples” on page 245. Prior to downloading the I/Q data, ensure that it
conforms to the data requirements shown on page 195. To learn about I/Q data for the signal
generator, see “Understanding Waveform Data” on page 196. For creating waveform data, see
“Creating Waveform Data” on page 225.

NOTE To avoid overwriting the current waveform in volatile memory, before downloading files into
volatile memory (WFML), change the file name or turn off the ARB. For more information, on
manually turning off the ARB, refer to the User’s Guide.

To turn off the ARB remotely, send: : SOURce: RAD o: ARB: STATe CFF.

Using Simulation Software

This procedure uses a complex data array created in MATLAB and uses the Agilent MXG/PSG/ESG
Download Assistant to download the data. To obtain the Agilent MXG/PSG/ESG Download Assistant,
see “Using the Download Utilities” on page 241.

There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.
2. Download the I/Q data.

232 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading Waveform Data

1. Open a connection session with the signal generator.

The following code establishes a LAN connection with the signal generator, sends the IEEE SCPI
command *i dn?, and if the connection fails, displays an error message.

Line Code—Open a Connection Session

1 io = agt_newconnection('tcpip','|P address');
% o0 = agt_newconnection(' gpib',<primary address>, <secondary address>);

2 [status, status_description,query result] = agt_query(io,'*idn?");
3 if status == -
4 display ‘fail to connect to the signal generator’;
5 end;
Line Code Description—Open a Connection Session with the Signal Generator
1 Sets up a structure (indicated above by i0) used by subsequent function calls to establish a LAN connection to
the signal generator.
®* agt_newconnection() is the function of Agilent Download Assistant used in MATLAB to build a
connection to the signal generator.
® If you are using GPIB to connect to the signal generator, provide the board, primary address, and
secondary address: t0 = agt_newconnection('gpib',0,19);
Change the GPIB address based on your instrument setting.
2 Send a query to the signal generator to verify the connection.
®* agt_query() is an Agilent Download Assistant function that sends a query to the signal generator.
® If signal generator receives the query *i dn?, status returns zero and query_result returns the signal
generator’s model number, serial number, and firmware version.
3-5 If the query fails, display a message.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 233

Creating and Downloading Waveform Files
Downloading Waveform Data

2. Download the 1/Q data

The following code downloads the generated waveform data to the signal generator, and if the
download fails, displays a message.

Line

6

o)

Code—Download the I/Q data

[status, status_description] = agt_waveforni oad(io, | Qnave,
"wavefornfilel , 2000, 'no_play',' normscale');

if status == -

display ‘fail to download to the signal generator’;

end;

Line

Code Description—Download the I/Q data

Download the I/Q waveform data to the signal generator by using the function call (agt_waveformload) from
the Agilent Download Assistant. Some of the arguments are optional as indicated below, but if one is used,

you must use all arguments previous to the one you require.
Notice that with this function, you can perform the following actions:
® download complex I/Q data

® name the file (optional argument)
® set the sample rate (optional argument)

If you do not set a value, the signal generator uses its preset value of 125 MHz (N5182A) or 100 MHz

(E4438C/E8267D), or if a waveform was previously play, the value from that waveform.
® start or not start waveform playback after downloading the data (optional argument)
Use either the argument play or the argument no_play.
® whether to normalize and scale the I/Q data (optional argument)

If you normalize and scale the data within the body of the code, then use no_normscale, but if you need
to normalize and scale the data, use norm_scale. This normalizes the waveform data to the DAC values

and then scales the data to 70% of the DAC values.
® download marker data (optional argument)
If there is no marker data, the signal generator creates a default marker file, all marker set to zero.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded Waveform” on
page 238.

7-9

If the download fails, display an error message.

234

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading Waveform Data

Using Advanced Programming Languages

This procedure uses code from the C++ programming example “Importing, Byte Swapping,
Interleaving, and Downloading I and Q Data—Big and Little Endian Order” on page 263.

For information on creating I/Q waveform data, refer to “Creating Waveform Data” on page 225.
There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.

2. Download the I/Q data.

1. Open a connection session with the signal generator.

The following code establishes a LAN connection with the signal generator or prints an error message
if the session is not opened successfully.

Line Code Description—Open a Connection Session

1 char* instQenString ="l an[hostname or | P address]";
[/ char* instQpenString ="gpi b<prinmary addr>, <secondary addr>";

2 I NST i d=i open(i nst QpenString);
3 if (lid)
4
5 fprintf(stderr, "iopen failed (%)\n", instenString);
6 return -1;
7 }
Line Code Description—Open a Connection Session
1 Assign the signal generator’s LAN hostname, IP address, or GPIB address to a character string.
® This example uses the Agilent IO library’s iopen() SICL function to establish a LAN connection with the
signal generator. The input argument, lan/hostname or IP address] contains the device, interface, or
commander address. Change it to your signal generator host name or just set it to the IP address used by
your signal generator. For example: “lan[999.137.240.9]"
® If you are using GPIB to connect to the signal generator, use the commented line in place of the first line.
Insert the GPIB address based on your instrument setting, for example “gpib0,19”.
® For the detailed information about the parameters of the SICL function ‘open(), refer to the online
“Agilent SICL User’s Guide for Windows.”
2 Open a connection session with the signal generator to download the generated I/Q data.

The SICL function <open() is from the Agilent 10 library and creates a session that returns an identifier to
id.

® If Zopen() succeeds in establishing a connection, the function returns a valid session ¢d. The valid session
id is not viewable, and can only be used by other SICL functions.

® If dopen() generates an error before making the connection, the session identifier is always set to zero.
This occurs if the connection fails.

® To use this function in C++, you must include the standard header
#include <sicl.h> before the main() function.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 235

Creating and Downloading Waveform Files
Downloading Waveform Data

Line

Code Description—Open a Connection Session

3-7

If id = 0, the program prints out the error message and exits the program.

2. Download the 1/Q data.

The following code sends the SCPI command and downloads the generated waveform data to the
signal generator.

Line CodeDescription—Download the I/Q Data
8 i nt bytesToSend;
9 byt esToSend = nunsanpl es*4;
10 char s[20];
11 char cmd[200] ;
12 sprintf(s, "%l", bytesToSend);
13 sprintf(cnd, ":MEM DATA \"WM.: FI LE1\", #%l%l", strlen(s), bytesToSend);
iwite(id, cmd, strlen(cnd), 0, 0);
14 iwite(id, igbuffer, bytesToSend, 0, 0);
15 iwite(id, "\n", 1, 1, 0):
16
Line Code Description—Download the I/Q data
8 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal generator.
9 Calculate the total number of bytes, and store the value in the integer variable defined in line 8.
In this code, numsamples contains the number of waveform points, not the number of bytes. Because it takes
four bytes of data, two I bytes and two Q bytes, to create one waveform point, we have to multiply
numsamples by four. This is shown in the following example:
numsamples = 500 waveform points
numsamples x4 = 2000 (four bytes per point)
bytesToSend = 2000 (numsamples X 4)
For information on setting the number of waveform points, see “1. Create I and Q data.” on page 226.
10 Create a string large enough to hold the bytesToSend value as characters. In this code, string s is set to 20
bytes (20 characters—one character equals one byte)
11 Create a string and set its length (¢cmd[200]) to hold the SCPI command syntax and parameters. In this code,
we define the string length as 200 bytes (200 characters).
12 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = "2000”
sprintf() is a standard function in C++, which writes string data to a string variable.
236 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code Description—Download the I/Q data
13 Store the SCPI command syntax and parameters in the string ¢md. The SCPI command prepares the signal
generator to accept the data.
® strlen() is a standard function in C++, which returns length of a string.
* If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA "WFMI1:FILE1\” #42000.
14 Send the SCPI command stored in the string cmd to the signal generator, which is represented by the session
id.
® Jwrite() is a SICL function in Agilent IO library, which writes the data (block data) specified in the string
cmd to the signal generator (id).
® The third argument of ‘write(), strlen(cmd), informs the signal generator of the number of bytes in the
command string. The signal generator parses the string to determine the number of I/Q data bytes it
expects to receive.
® The fourth argument of iwrite(), 0, means there is no END of file indicator for the string. This lets the
session remain open, so the program can download the I/Q data.
15 Send the generated waveform data stored in the I/Q array (igbuffer) to the signal generator.
* qwrite() sends the data specified in igbuffer to the signal generator (session identifier specified in id).
® The third argument of iwrite(), bytesToSend, contains the length of the i{gbuffer in bytes. In this example,
it is 2000.
® The fourth argument of ‘write(), 0, means there is no END of file indicator in the data.
In many programming languages, there are two methods to send SCPI commands and data:
— Method 1 where the program stops the data download when it encounters the first zero (END
indicator) in the data.
— Method 2 where the program sends a fixed number of bytes and ignores any zeros in the data. This
is the method used in our program.
For your programming language, you must find and use the equivalent of method two. Otherwise you may
only achieve a partial download of the I and Q data.
16 Send the terminating carriage (\n) as the last byte of the waveform data.
® Jwrite() writes the data “\n” to the signal generator (session identifier specified in id).
® The third argument of “write(), 1, sends one byte to the signal generator.
® The fourth argument of {write(), 1, is the END of file indicator, which the program uses to terminate the
data download.
To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded Waveform” on
page 238.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 237

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

Loading, Playing, and Verifying a Downloaded Waveform

The following procedures show how to perform the steps using SCPI commands. For front panel key
commands, refer to the User’s Guide or to the Key help in the signal generator.

Loading a File from Non-Volatile Memory

Select the downloaded I/Q file in non-volatile waveform memory (NVWFM) and load it into volatile
waveform memory (WFM1). The file comprises three items: I/Q data, marker file, and file header
information.

Send one of the following SCPI command to copy the I/Q file, marker file and file header
information:

- MEMory: CCPY: NAME "<NWWM fi | e_nanme>", " <WFML: fi | e_nanme>"

- MEMory: CCPY: NAME "<NVMKR fi | e_nanme>", "<MKRL: fi | e_nanme>"
: MEMory: CCPY: NAME "<NVHDR fi |l e_nanme>", "<HDR fi |l e_name>"

NOTE When you copy a waveform file, marker file, or header file information from volatile or
non-volatile memory, the waveform and associated marker and header files are all copied.
Conversely, when you delete an I/Q file, the associated marker and header files are deleted.
It is not necessary to send separate commands to copy or delete the marker and header
files.

Playing the Waveform

NOTE If you would like to build and play a waveform sequence, refer to “Building and Playing
Waveform Sequences” on page 240.

Play the waveform and use it to modulate the RF carrier.
1. List the waveform files from the volatile memory waveform list:
Send the following SCPI command:
: MVEMory: CATal og? " WFML: "
2. Select the waveform from the volatile memory waveform list:
Send the following SCPI command:
: SOURce: RAD 0: ARB: WAVef orm " WFML: <f i | e_nane>"
3. Play the waveform:
Send the following SCPI commands:
: SOURce: RADI 0: ARB: STATe ON
: QUTPut : MDul at i on: STATe ON
: QUTPut : STATe ON

238 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

Verifying the Waveform

Perform this procedure after completing the steps in the previous procedure, “Playing the Waveform”
on page 238.

1. Connect the signal generator to an oscilloscope as shown in the figure.

| QUT

Q OUT T\

EVENT 1 Oscilloscope

P N

\
|

N
D000
q

e
(0
e
laialafe HH
0o 0o0o
0000
/
oog@?
0
ooo@oo
950
" @y
050
09g

oo 0
=5 oo oo ooo PR = === ==} @ ©® @
SIGNAL GENERATOR N\ oh 1)
_ Ch 2
_ Trigger Input

2. Set an active marker point on the first waveform point for marker one.

NOTE Select the same waveform selected in “Playing the Waveform” on page 238.

Send the following SCPI commands:
: SOURce: RAD 0: ARB: MARKer : CLEar: ALL "WML: <fi |l e_nanme>", 1
: SOURce: RAD 0: ARB: MARKer : SET "WML: <fil e_name>", 1,1, 1, 0.

3. Compare the oscilloscope display to the plot of the I and Q data from the text file you created
when you generated the data.

If the oscilloscope display, and the I and Q data plots differ, recheck your code. For detailed
information on programmatically creating and downloading waveform data, see “Creating
Waveform Data” on page 225 and “Downloading Waveform Data” on page 232. For information on
the waveform data requirements, see “Waveform Data Requirements” on page 195.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 239

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

Building and Playing Waveform Sequences

The signal generator can be used to build waveform sequences. This section assumes you have
created the waveform segment file(s) and have the waveform segment file(s) in volatile memory. The
following SCPI commands can be used to generate and work with a waveform sequence. For more
information refer to the signal generator’'s SCPI Command Reference and User’s Guide.

NOTE If you would like to verify the waveform sequence, refer to “Verifying the Waveform” on

page 239.

List the waveform files from the volatile memory waveform list:
Send the following SCPI command:
: MVEMory: CATal og? " WFML: "
Select the waveform segment file(s) from the volatile memory waveform list:
Send the following SCPI command:
: SOURce: RAD 0: ARB: WAVef or m "WFML: <f i | e_nane>"

Save the waveform segment(s) (“ <wavef or mL>" “<wavef or n2>", ..), to non-volatile memory as a
waveform sequence (“<file_name>"), define the number of repetitions (<reps>), each waveform
segment plays, and enable/disable markers (ML| M2| MB| M4| ...), for each waveform segment:

Send the following SCPI command:
: SOURce: RAD o: ARB: SEQuence
"<file_name>"," <wavef or n1>", <reps>, ML| M2| MB| M4, {" <wavef or n2>", <r eps>, ALL}

: SQURce: RAD 0: ARB: SEQuence? "<fil e_name>"

NOTE ~ ML| M2| MB| Mt represent the number parameter of the marker selected (i.e. 1| 2| 3| 4). Entering

ML| M2| MB| M} causes the signal generator to display an error. For more information on this
SCPI command, refer to the signal generator’s SCPI Command Reference.

4. Play the waveform sequence:
Send the following SCPI commands:
: SOURce: RAD 0: ARB: STATe ON
: QUTPut : MDul at i on; STATe ON
: QUTPut : STATe ON
240 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Using the Download Utilities

Creating and Downloading Waveform Files
Using the Download Utilities

Agilent provides free download utilities to download waveform data into the signal generator. The

table in this section describes the capabilities of three such utilities.

For more information and to install the utilities, refer to the following URLs:

¢ Agilent Signal Studio Toolkit: Attp://www.agilent.com/find/signalstudio

This software provides a graphical interface for downloading files.

¢ Agilent IntuiLink for Agilent MXG/PSG/ESG/E8663B Signal Generators:

hitp://www.agilent.com/find/intutlink

This software places icons in the Microsoft Excel and Word toolbar. Use the icons to connect to

the signal generator and open a window for downloading files.

¢ Agilent MXG/PSG/ESG Download Assistant: http://www.agilent.com/find/downloadassistant

This software provides functions for the MATLAB environment to download waveform data.

Features Agilent Signal Agilent IntuiLink Agilent
Studio Toolkit MXG/PSG/ESG

Download
Assistant

Downloads encrypted waveform files X

Downloads Signal Studio waveform files X2

Downloads complex MATLAB waveform data X

Downloads MATLAB files (.mat) X

Downloads unencrypted interleaved 16-bit I/Q files b X

Interleaves and downloads earlier 14-bit E443xB I and Q files? X

Swaps bytes for little endian order X

Downloads user-created marker files X X X

Performs scaling X X X

Starts waveform play back X X

Sends SCPI Commands and Queries X X

Builds a waveform sequence X X

a. Some Signal Studio products let you create and export waveform files to a PC. Signal Studio Toolkit downloads the exported files.

b. ASCII or binary format.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

241

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

Downloading E443xB Signal Generator Files

To download earlier E443xB model I and Q files, use the same SCPI commands as if downloading
files to an E443xB signal generator. The signal generator automatically converts the E443xB files to
the proper file format as described in “Waveform Structure” on page 203 and stores them in the
signal generator’s memory. This conversion process causes the signal generator to take more time to
download the earlier file format. To minimize the time to convert earlier E443xB files to the proper
file format, store E443xB file downloads to volatile memory, and then transfer them over to
non-volatile (NVWFM) memory.

NOTE You cannot extract waveform data downloaded as E443xB files.

E443xB Data Format

The following diagram describes the data format for the E443xB waveform files. This file structure
can be compared with the new style file format shown in “Waveform Structure” on page 203. If you
create new waveform files for the signal generator, use the format shown in “Waveform Data
Requirements” on page 195.

E443xB ARB Data Format

Marker Data
Volatile Memory Path

- | 14 bits DAC Data
| File MSB Offset Binary LSB
ARBI /waveform name | 5 I 14 I
Q File
ARBQ /waveform name | 2 I 14 |
—»lN/Al— 14 bits DAC Data

Offset Binary
arb data

Storage Locations for E443xB ARB files

Place waveforms in either volatile memory or non-volatile memory. The signal generator supports the
E443xB directory structure for waveform file downloads (i.e. “ARBIL:”, “ARBQ:”, “NVARBL.”, and
“NVARBQ:”, see also “SCPI Commands” on page 243).

Volatile Memory Storage Locations

e /user/arbi/
e /user/arbq/

Non-Volatile Memory Storage Locations

e /user/nvarbi/
e /user/nvarbq/

242 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

Loading files into the above directories (volatile or non-volatile memory) does not actually store them
in those directories. Instead, these directories function as “pipes” to the format translator. The signal
generator performs the following functions on the E443xB data:

¢ Converts the 14-bit I and Q data into 16-bit data (the format required by the signal generator).
Subtract 8192, left shifts the data, and appends two bits (zeros) before the least significant bit
(i.e. the offset binary values are converted to 2’s complement values by the signal generator).

E443xB 14-Bit Data

| data Q data
/ oy N - O
100110110111001 00

L I00100111011001I

Marker bits 14 data bits Reserved bits 14 data bits

Subtracts 8192, Left Shifts, and Adds Zeros—Removes Marker and Reserved Bits
(16-Bit Data Format)

16-bit | data 16-bit Q data
' - N . N
11 10010110111001&% %9 10000111011001%9
Marker bits removed Bits added Reserved bits removed Bits added

* Creates a marker file and places the marker information, bits 14 and 15 of the E443xB I data,
into the marker file for markers one and two. Markers three and four, within the new marker file,
are set to zero (off).

Places the | Marker Bits into the Signal Generator Marker File

0011

/l Marker 1 and 2 bits from the E443xB | data

Marker 3 and 4 bits

¢ Interleaves the 16-bit I and Q data creating one 1/Q file.

¢ Creates a file header with all parameters set to unspecified (factory default file header setting).

SCPI Commands

Use the following commands to download E443xB waveform files into the signal generator.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 243

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

NOTE To avoid overwriting the current waveform in volatile memory, before downloading files into
volatile memory (WML), change the file name or turn off the ARB. For more information, on
manually turning off the ARB, refer to the User’s Guide.

To turn off the ARB remotely, send: : SOURce: RAD o: ARB: STATe CFF.

Extraction Method/
Memory Type

Command Syntax Options

SCPY/
volatile memory

: MVEM DATA "ARBI : <fil e_nanme>", <lI waveform bl ock dat a>
. MVEM DATA "ARBQ <fil e_nane>", <Q waveform dat a>

SCP1/
non-volatile memory

: MVEM DATA "NVARBI : <fil e_nane>", <I waveform bl ock data>
: MVEM DATA "NVARBQ <fil e_nane>", <Q waveform bl ock dat a>

The variables <I wavef orm bl ock data> and <Q wavef orm bl ock dat a> represents data in the
E443xB file format. The string variable <fil| e_nane> is the name of the I and Q data file. After
downloading the data, the signal generator associates a file header and marker file with the I/Q data

file.

244

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Programming Examples

NOTE The programming examples contain instrument specific information. However, users can still
use these programming examples by substituting in the instrument-specific information for
your signal generator. Model specific exceptions for programming use, will be noted at the
top of each programming section.

The programming examples use GPIB or LAN interfaces and are written in the following languages:

e (C++ (page 245)

¢ MATLAB (page 270)

¢ Visual Basic (page 277)
 HP Basic (page 283)

See Chapter 2 of this programming guide for information on interfaces and IO libraries.

The example programs are also available on the signal generator Documentation CD-ROM, which
allows you to cut and paste the examples into an editor.

C++ Programming Examples

This section contains the following programming examples:

¢ “Creating and Storing Offset [/Q Data—Big and Little Endian Order” on page 246

¢ “Creating and Storing I/Q Data—Little Endian Order” on page 250

¢ “Creating and Downloading I/Q Data—Big and Little Endian Order” on page 252

¢ “Importing and Downloading I/Q Data—Big Endian Order” on page 256

¢ “Importing and Downloading Using VISA—Big Endian Order” on page 259

¢ “Importing, Byte Swapping, Interleaving, and Downloading I and Q Data—Big and Little Endian
Order” on page 263

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 245

Creating and Downloading Waveform Files
Programming Examples

Creating and Storing Offset 1/Q Data—Big and Little Endian Order
On the documentation CD, this programming example’s name is “offset_iq_c++.tat.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) follows the same coding
algorithm as the MATLAB programming example “Creating and Storing I/Q Data” on page 270 and
performs the following functions:

¢ error checking

¢ data creation

¢ data normalization

* data scaling

¢ I/Q signal offset from the carrier (single sideband suppressed carrier signal)

* byte swapping and interleaving for little endian order data

e I and Q interleaving for big endian order data

¢ binary data file storing to a PC or workstation

* reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++
download programming examples to download the file to the signal generator.

/1 This C++ exanple shows how to

/1 1.) Create a sinple | Q waveform

/1 2.) Save the waveforminto the ESG PSG Internal Arb format

1/ This format is for the E4438C, E8267C, E8267D

11 This format will not work with the ESG E443xB or the Agilent MXG N518xA
/1 3.) Load the internal Arb format file into an array

#i ncl ude <stdio. h>
#i nclude <string. h>
#i ncl ude <math. h>

const int PO NTS = 1000; // Size of waveform
const char *conputer = “PCWN’;

int main(int argc, char* argv[])

{

I1 1.) Create Simple | Q Signal * s st sonknsssssntn s ssnsnshsnasnssnss
/1 This signal is a single tone on the upper

/1 side of the carrier and is usually refered to as

/1 a Single Side Band Suppressed Carrier (SSBSC) signal.

/1 1t is nothing nore than a cosine waveformin |

/1 and a sine waveformin Q

int points = PONTS; // Nunber of points in the waveform
int cycles = 101; // Determines the frequency offset fromthe carrier

246 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

doubl e Iwave[PONTS]; // | waveform

doubl e Qunave[PO NTS]; // Q waveform

short int waveforn{2*PO NTS]; // Holds interleaved I/Q data
doubl e maxAmp = 0; // Used to Normalize waveform data
double minAmp = 0; // Used to Normalize waveform data

doubl e scale = 1;

char buf; // Used for byte swapping

char *pChar; // Used for byte swapping

bool PC = true; // Set flag as appropriate

doubl e phaselnc = 2.0 * 3.141592654 * cycles / points;
doubl e phase = 0;

int i =0;
for(i=0; i<points; i++)
{
phase = i * phaselnc;
Iwave[i] = cos(phase);
Qrvave[i] = sin(phase);
}
/1 2.) Save wavefOr Min iNternal fOrmAt ***** % xkskskssssssssksksknsxtsnss
/1 Convert the | and Qdata into the internal arb format
/1 The internal arb format is a single waveform containing interleaved |Q
I/ data. The I/Q data is signed short integers (16 bits).
/1 The data has val ues scal ed between +-32767 where
11 DAC Val ue Descri ption
I 32767 Maxi mum positive val ue of the DAC
11 0 Zero out of the DAC
11 - 32767 Maxi mum negative val ue of the DAC
/1 The internal arb expects the data bytes to be in Big Endian fornmat.
/1 This is opposite of how short integers are saved on a PC (Little Endian).
/1 For this reason the data bytes are swapped before being saved.
/1 Find the Maxi num anplitude in | and Q to normalize the data between +-1
maxAnmp = | wave[0] ;
m nAnmp = | wave[0] ;

for(i=0; i<points; i++)

{

f(maxAmp < lwave[i])
maxAnp = |wave[i];
else if(minAmp > Iwavel[i])

m nAnmp = | wave[i];

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 247

Creating and Downloading Waveform Files
Programming Examples

if(maxAmp < Qnaveli])
maxAnmp = Qwave[i];
else if(mnAnp > Qurave[i])
m nAmp = Quave[i];
}
maxAmp = fabs(maxAnp);

m nAnmp = fabs(m nAnp);
if(mnAmp > maxAnp)
maxAnp = m nAnp;

/1 Convert to short integers and interleave |I/Q data
scal e = 32767 / maxAnp; /'l Watch out for divide by zero.
for(i=0; i<points; i++)
{
waveforn{2*i] = (short)floor(lwave[i]*scale + 0.5);
wavefornf 2*i +1] = (short)floor(Qnave[i]*scale + 0.5);
}
/1 1f on a PC swap the bytes to Big Endian
if(strcnp(conputer,”PCWN") == 0)
I1if(PC)
{
pChar = (char *)&waveforniO]; /| Character pointer to short int data
for(i=0; i<2*points; i++)
{
buf = *pChar;
*pChar = *(pChar+1);
*(pChar +1) = buf;
pChar += 2;

}

// Save the data to a file
/1l Use FTP or one of the downl oad assistants to download the file to the
/1 signal generator

char *filename = “C\\ Tenp\\ PSGTest Fi | e”;

FI LE *stream = NULL;

stream = fopen(filename, “wtb”);// Open the file

if (streamr=NULL) perror (“Cannot Open File");

int numwitten = fwite((void *)waveform sizeof(short), points*2, stream);
fclose(stream;// Close the file

1/ 3) Load the internal Arb format file ****x*kkkkkkhkkhkkhkkhkkhhkkkkkkkkk*x

/1 This process is just the reverse of saving the waveform

248 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

/1 Read in waveform as unsigned short integers.

/'l Swap the bytes as necessary

/1 Normalize between +-1

/1 De-interleave the I/Q Data

I/ Open the file and load the internal format data
stream = fopen(filename, “r+b”);// Open the file
if (streamr=NULL) perror (“Cannot Open File");

int nuntread = fread((void *)waveform sizeof(short), points*2,

fclose(strean);// Close the file
/1 1f on a PC swap the bytes back to Little Endian
if(strcnp(conputer,”PCWN’) == 0)

{
pChar = (char *)&waveforniO]; /| Character pointer to short
for(i=0; i<2*points; i++)
{
buf = *pChar;
*pChar = *(pChar+1);
*(pChar +1) = buf;
pChar += 2;
}
}

/1 Normalize De-Interleave the I Q data
doubl e I wavel n[PO NTS] ;
doubl e Qnavel n[PO NTS] ;
for(i=0; i<points; i++)
{
Iwavel n[i] = waveforn{2*i] / 32767.0;
Qrvavel n[i] = waveforni2*i+1] / 32767.0;
}

return O;

Creating and Downloading Waveform Files

stream);

int data

Programming Examples

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

249

Creating and Downloading Waveform Files
Programming Examples

Creating and Storing 1/Q Data—Little Endian Order

On the documentation CD, this programming example’s name is “CreateStore_Data_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrior 3.0) performs the following
functions:

error checking

data creation

byte swapping and interleaving for little endian order data
binary data file storing to a PC or workstation

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++
download programming examples to download the file to the signal generator.

#i ncl ude <i ostrean»

#i ncl ude <fstreanm>

#i ncl ude <math. h>
#i nclude <stdlib. h>

usi ng nanespace std;

int min (void)
{
of stream out _stream // wite the I/Qdata to a file
const unsigned int SAMPLES =200; /1 nunber of sanple pairs in the waveform
const short AMPLI TUDE = 32000; /1 anplitude between 0 and full scal e dac val ue
const double two_pi = 6.2831853;
/lallocate buffer for waveform
short* igData = new short[2*SAMPLES];// need two bytes for each integer
if (!iqgData)
{
cout << "Could not allocate data buffer."” << endl;
return 1;
}
out_streamopen("lQdata");// create a data file
if (out_streamfail())
{
cout << "Input file opening failed" << endl;
exit(1);
}
//generate the sanple data for | and Q The | channel will have a sine
//wave and the Q channel will a cosine wave.
250 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

for (int i=0; i<SAWPLES; ++i)
{

iqData[2*i] = AWPLI TUDE * sin(two_pi*i/(float)SAWMPLES);

i qDat a[2*i +1] = AWMPLI TUDE * cos(two_pi *i/(fl oat) SAMPLES);
}

/1 make sure bytes are in the order MSB(nost significant byte) first. (PC only).

char* cptr = (char*)iqData;// cast the integer values to characters

for (int i=0; i<(4*SANPLES); i+=2)// 4*SAMPLES

{
char tenp = cptr[i];// swap LSB and MSB bytes
cptri]=cptr[i+1];
cptr[i+1] =t enp;

}

/Il nowwite the buffer to a file

out _streamwite((char*)iqbData, 4*SAWPLES);
return O;

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 251

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading 1/Q Data—Big and Little Endian Order
On the documentation CD, this programming example’s name is “CreateDwnLd_Data_c++.tat.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following
functions:

¢ error checking

¢ data creation

e data scaling

* text file creation for viewing and debugging data

* byte swapping and interleaving for little endian order data
¢ interleaving for big endian order data

¢ data saving to an array (data block)

* data block download to the signal generator

/'l This C++ programis an exanple of creating and scaling
/1 1 and Q data, and then downl oading the data into the
/'l signal generator as an interleaved I/Qfile.

/1 This exanpl e uses a sine and cosine wave as the 1/Q
/1 data.

/1

/1 Include the standard headers for SICL progranm ng

#i nclude <sicl.h>

#include <stdlib. h>

#i ncl ude <stdio. h>

#i nclude <string. h>

#i ncl ude <math. h>

/1 Choose a GPIB, LAN, or RS-232 connection
char* instQpenString ="1an[gal gabhcpl]”;
//char* instQpenString ="gpi b0, 197;

/1 Pick some maxi mum nunber of sanples, based on the
/1 anmount of menory in your conputer and the signal generator.
const int NUMSAMPLES=500;

int main(int argc, char* argv[])

{
/1 Create a text file to view the waveform
/'l prior to downloading it to the signal generator.
/Il This verifies that the data | ooks correct.

char *ofile = “c:\\temp\\iqg.txt";

252 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

// Create arrays to hold the I and Q data

int idata[NUMSAMPLES] ;
int gdat a[NUMSAMPLES] ;

/1l save the nunmber of sanpes into nunmsanpl es
int nunsanpl es = NUMSAMPLES;

/1 Fill the | and Q buffers with the sanple data
for(int index=0; index<nunsanples; index++)
{

/!l Create the | and Q data for the nurmber of waveform

/1 points and Scal e the data (20000 * ...) as a precentage

/1 of the DAC full scale (-32768 to 32767). This exanple
/|l scales to approxi mately 70% of full scale.

i dat a[i ndex] =23000 * si n((4*3. 14*i ndex)/nunmsanpl es);

gdat a[i ndex] =23000 * cos((4*3.14*i ndex)/ nunsanpl es);

/1 Print the | and Qvalues to a text file. View the data
/Il to see if its correct and if needed, plot the data in a
/|l spreadsheet to hel p spot any problens.

FILE *outfile = fopen(ofile, “wW);

if (outfile==NULL) perror (“Error opening file to wite");
for (i ndex=0; index<numsanpl es; index++)

{

fprintf(outfile, “%, %\ n”, idata[index], qdata[index]);

}

fclose(outfile);

/1 Little endian order data, use the character array and for |oop.

Creating and Downloading Waveform Files
Programming Examples

/1 1f big endian order, comment out this character array and for |oop,

// and use the next |loop (Big Endian order data).

/1 W need a buffer to interleave the | and Q data.
I/l 4 bytes to account for 2 | bytes and 2 Q bytes.

char i gbuff er [NUVSAMPLES* 4] ;

/Il Interleave | and Q and swap bytes fromlittle
/1 endian order to big endian order.
for(index=0; index<nunsanples; index++)

{

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

253

Creating and Downloading Waveform Files
Programming Examples

int ivalue = idata[index];
int gvalue = qdata[index];

i gbuf fer[index*4] = (ivalue >> 8) & OxFF; // high byte of i
i gbuf fer[index*4+1] = ivalue & OxFF; /1 low byte of i

i gbuf fer[index*4+2] = (qvalue >> 8) & OxFF; // high byte of g
i gbuf fer[index*4+3] = qval ue & OxFF; /1 1ow byte of q

/1 Big Endian order data, uncoment the follow ng |ines of code.

/1 Interleave the I and Q data.

/1 short iqbuffer[NUMSAMPLES* 2] ; /1 Big endian order, uncomment this |ine
/1 for(index=0; index<nunmsanples; index++) // Big endian order, uncoment this |ine
I { /1 Big endian order, uncomment this |ine
11 i gbuf fer[i ndex*2] = idata[index]; // Big endian order, uncomment this line
11 i gbuf fer[index*2+1] = qdata[index]; // Big endian order, uncomment this |ine
11} /1 Big endian order, uncomment this |ine

// Open a connection to wite to the instrunent

I NST i d=i open(i nst QpenString);

if (lid)

{
fprintf(stderr, “iopen failed (%)\n”, instOpenString);
return -1;

I/ Declare variables to hold portions of the SCPI command
int bytesToSend;

char s[20];

char cnd[200] ;

byt esToSend = nunsanpl es*4; I/ calculate the nunmber of bytes
sprintf(s, “%l", bytesToSend); // create a string s with that nunber of bytes

/1 The SCPI command has four parts.
11 Part 1 = : MEM DATA “fil ename”, #

11 Part 2 = length of Part 3 when witten to a string
11 Part 3 = length of the data in bytes. This is in s from above.
/1 Part 4 = the buffer of data

// Build parts 1, 2, and 3 for the |I and Q data.
sprintf(cnd, “:MEM DATA \"WFML: FI LE1I\", #%%l”, strlen(s), bytesToSend);

254 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

// Send parts 1, 2, and 3

iwite(id, cnd, strlen(cnd), 0, 0);

// Send part 4. Be careful to use the correct conmand here. In many

/1 programm ng | anguages, there are two nmethods to send SCPl conmands:
11 Method 1 = stop at the first ‘0’ in the data

11 Method 2 = send a fixed nunber of bytes, ignoring ‘0" in the data.
/1 You nust find and use the correct command for Method 2.

iwite(id, iqbuffer, bytesToSend, 0, 0);

// Send a termnating carriage return

iwite(id, “\n", 1, 1, 0);

printf(“Loaded file using the E4438C, E8267C and E8267D format\n");

return O;

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 255

Creating and Downloading Waveform Files
Programming Examples

Importing and Downloading I/Q Data—Big Endian Order

On the documentation CD, this programming example’s name is “impDwnLd_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrier 3.0) assumes that the data
is in big endian order and performs the following functions:

¢ error checking
* binary file importing from the PC or workstation.
¢ binary file download to the signal generator.

/'l Descr
11

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

iption: Send a file in blocks of data to a signal generator

<sicl.h>
<stdlib. h>
<stdi o. h>

<string. h>

/| ATTENTI ON:

/1 - Configure these three lines appropriately for your instrunent

11 and use before conpiling and running

Il

char* instQpenString = "gpib7,19"; //for LAN replace with “lan[<hostnane or |P address>]"

const char* local SrcFile

= "D:\\home\\ TEST_WAVE"; //enter file |location on PC workstation

const char* instDestFile = "/USER BBGL/ WAVEFORM TEST_WAVE"; //for non-vol atile nmenor

y
//renove BBGL fromfile path

/1 Size of the copy buffer
const int BUFFER_SI ZE = 100*1024;

int
mai n()
{
I NST i d=i open(i nst OpenString);
if (lid)
{
fprintf(stderr, "iopen failed (%)\n", instOpenString);
return -1;
}
FILE* file = fopen(local SrcFile, "rb");
if (Mfile)
{
fprintf(stderr, "Could not open file: %\n", local SrcFile);
return O;
}
256 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

if(fseek(file, 0, SEEK END) < 0)

{
fprintf(stderr,"Cannot seek to the end of file.\n");
return O;

long lenToSend = ftell (file);
printf("File size = %\n", |enToSend);

if (fseek(file, 0, SEEK_SET) < 0)

{
fprintf(stderr,"Cannot seek to the start of file.\n");
return O;

char* buf = new char [BUFFER_SI ZE] ;
if (buf && | enToSend)
{
/'l Prepare and send the SCPI command header
char s[20];
sprintf(s, "%", |enToSend);
int lenLen = strlen(s);
char s2[256];
sprintf(s2, "memdata \"%\", #%l%", instDestFile, |enLen, |enToSend);
iwite(id, s2, strlen(s2), 0, 0);

/1 Send file in BUFFER_SI ZE chunks

| ong nunRead;

do

{
nunRead = fread(buf, sizeof(char), BUFFER SIZE, file);
iwite(id, buf, nunRead, 0, 0);

} while (nunRead == BUFFER _SI ZE);

/1 Send the terminating new ine and EOM
iwite(id, "\n", 1, 1, 0);

delete [] buf;
}

el se

{

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 257

Creating and Downloading Waveform Files

Programming Examples

fprintf(stderr,

fclose(file);
iclose(id);
return O;

"Coul d not allocate nenmory for copy buffer\n");

258

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Importing and Downloading Using VISA—Big Endian Order
On the documentation CD, this programming example’s name is “DownLoad_Visa_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) assumes that the data is in
big endian order and performs the following functions:

¢ error checking
¢ binary file importing from the PC or workstation
¢ binary file download to the signal generator’s non-volatile memory

To load the waveform data to volatile (WFM1) memory, change the instDestfile declaration to:
“USER/BBG1/WAVEFORM/”.

[Rk R Rk R R R R KRk R R KK KR KKK R R KRR R R KRR K R R KR K R R KR R R K
/1 PROGRAM NAME: Downl oad_Vi sa_c++. cpp

11

/1 PROGRAM DESCRI PTI ON: Sanpl e test programto downl oad ARB waveform data. Send a

/1 file in chunks of ascii data to the signal generator

11

/1 NOTE: You nust have the Agilent IO Libraries installed to run this program

11

/1 This exanple uses the LANTCPIP to download a file to the signal generator's

/1 non-volatile nenory. The program all ocates a nmenory buffer on the PC or

/1 workstation of 102400 bytes (100*1024 bytes). The actual size of the buffer is

/1 limted by the nenory on your PC or workstation, so the buffer size can be

/1 increased or decreased to neet your systemlimtations

11

/1 VWile this programuses the LAN TCPIP to downl oad a waveformfile into

/1 non-volatile nenory, it can be nodified to store files in volatile menory

/1 WFML using GPIB by setting the instrQpenString = "TCPl PO: : XXX. XXX. XXX. XXX: : | NSTR'
I/ declaration with "GPIB::19::1NSTR'

11

/1 The program al so includes some error checking to alert you when problens arise

/1 while trying to download files. This includes checking to see if the file exists.

[R R R kKR KRR KRk K R R KRR KR KKK KR KRR R R KRRk KR KRR R R KRR K R R K Kk
/1 1 MPORTANT: Repl ace the xxx.xxx.xxx.xxx |P address in the instOpenString declaration
/1 in the code below with the I P address of your signal generator. (or you can use the
/1 instrunent's hostnane). Replace the local SrcFile and instDestFile directory paths

/1 as needed

[R KRk ok k ok ok ok kkk ok kkkkkkk ok kk ok Kk Kk kkkkkkkhkkkkkkkkkkkhkkkkhkkkkhkkhhkkhkkkkhkkkkkk kK ok

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>

#i nclude "visa.h"

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 259

Creating and Downloading Waveform Files
Programming Examples

Il
11
11

| MPORTANT:

Configure the following three lines correctly before conpiling and running

char* instQpenString ="TCPI PO: : xXx. XXX. XxX. Xxx: : INSTR"; // your instrunent's |P address

const char* local SrcFile = "\\Files\\IQ DataC';

const char* instDestFile = "/ USER WAVEFORM | Q Dat aC';

const int BUFFER_SI ZE = 100*1024;// Size of the copy buffer

int main(int argc, char* argv[])
{
Vi Session defaul tRM vi;
Vi Status status = 0;
status = vi OpenDef aul t RM &defaul tRM;// Open the default resource nanager
// TO DO Error handling here
status = vi Open(defaul tRM instOpenString, VI_NULL, VI_NULL, &vi);
if (status)// If any errors then display the error and exit the program
{
fprintf(stderr, "viOpen failed (%)\n", instOpenString);
return -1;
}
FILE* file = fopen(local SrcFile, "rb");// Open local source file for binary reading
if (!file) // If any errors display the error and exit the program
{
fprintf(stderr, "Could not open file: %\n", local SrcFile);
return O;
}
if(fseek(file, 0, SEEK END) < 0)
{
fprintf(stderr,"Cannot |seek to the end of file.\n");
return O;
}
260 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Il
Il

Creating and Downloading Waveform Files
Programming Examples

long lenToSend = ftell(file);// Nunber of bytes in the file
printf("File size = %\n", |enToSend);
if (fseek(file, 0, SEEK_SET) < 0)
{
fprintf(stderr,"Cannot |seek to the start of file.\n");
return O;
unsi gned char* buf = new unsigned char[BUFFER SI ZE]; // Allocate char buffer nmenory
if (buf && | enToSend)
{
/1 Do not send the EO (end of instruction) termnator on any wite except the
/1l last one
vi Set Attribute(vi, VI_ATTR_SEND END EN, 0);

/'l Prepare and send the SCPI command header

char s[20];
sprintf(s, "%", |enToSend);

int lenLen = strlen(s);
unsi gned char s2[256];

Wite the command mmem data and the header. The nunber |enLen represents the
number of bytes and the actual nunber of bytes is the variable | enToSend

sprintf((char*)s2, "memdata \"%\", #%%", instDestFile, |enLen, |enToSend);

Send the command and header to the signal generator

viWite(vi, s2, strlen((char*)s2), 0);

| ong nunRead;

Send file in BUFFER SI ZE chunks to the signal generator

do

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 261

Creating and Downloading Waveform Files
Programming Examples

nunmRead = fread(buf, sizeof(char), BUFFER SIZE, file);

viWite(vi, buf, nunRead, 0);

} while (nunRead == BUFFER_SI ZE);

/1 Send the terminating new ine and EO

viSetAttribute(vi, VI_ATTR SEND END EN, 1);

char* newLine = "\n";

viWite(vi, (unsigned char*)new.ine, 1, 0);

del ete [] buf;

}

el se

{

fprintf(stderr, "Could not allocate nmenory for copy buffer\n");

fclose(file);
vi Cl ose(vi);
vi Cl ose(defaul tRM;

return O;

262 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Importing, Byte Swapping, Interleaving, and Downloading | and Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is “impDwnLd2_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following

functions:

¢ error checking

¢ Dbinary file importing (earlier E443xB or current model signal generators)

¢ byte swapping and interleaving for little endian order data

* data interleaving for big endian order data
* data scaling

¢ binary file download for earlier E443xB data or current signal generator formatted data

/1 This C++ programis an exanple of loading | and Q

/1 data into an E443xB, E4438C, E8267C, or E8267D si gnal
/1 generator.

11

/1 1t reads the | and Q data froma binary data file

/1 and then wites the data to the instrument.

/1 1nclude the standard headers for SICL progranm ng
#i ncl ude <sicl.h>

#i nclude <stdlib. h>

#i nclude <stdio. h>

#i nclude <string. h>

// Choose a GPIB, LAN, or RS-232 connection
char* instQpenString ="gpi b0, 19”;

/1 Pick sonme maxi num nunber of sanples, based on the
/1 anount of nenory in your conputer and your wavef ormns.
const int MAXSAMPLES=50000;

int main(int argc, char* argv[])

/1 These are the I and Qinput files.

/1 Sonme conpilers will allow /' in the directory

/1 nanes. O der conpilers mght need ‘\\' in the

/1 directory nanes. It depends on your operating system
/1 and conpiler.

char *ifile = “c:\\Signal Generator\\data\\BurstAll.bin";
char *qgfile = “c:\\Signal Generator\\data\\Burst A1Q bi n";

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

263

Creating and Downloading Waveform Files
Programming Examples

/1 This is a text file to which we will wite the
/1 1 and Q data just for debugging purposes. It is
/1 a good progranming practice to check your data
/1 in this way before attenpting to wite it to

/1 the instrument.

char *ofile = “c:\\Signal Generator\\data\\iqg.txt";

// Create arrays to hold the I and Q data
int idata[MAXSAMPLES] ;
i nt gdat a MAXSAMPLES] ;

/1 Often we nust nodify, scale, or offset the data
I/ before loading it into the instrument. These
/1l buffers are used for that purpose. Since each
Il sanple is 16 bits, and a character only hol ds
/1 8 bits, we nmust make these arrays twice as |ong
// as the | and Q data arrays.

char i buffer[MAXSAMPLES* 2] ;

char gbuf f er [MAXSAMPLES* 2] ;

/1l For the E4438C or E8267C/ 67D, we might also need to interleave
/!l the | and Q data. This buffer is used for that

/1l purpose. In this case, this buffer nust hold

/1 both | and Q data so it needs to be four tines

// as big as the data arrays.

char i gbuf f er [MAXSAMPLES* 4] ;

/1 Declare variables which will be used |ater
bool done;
FILE *infile;

int index, nunsanples, i1, i2, ivalue;

/1 In this exanple, we'll assume the data files have

/Il the | and Qdata in binary formas unsigned 16 bit integers.
/1 This next block reads those binary files. [If your

// data is in sone other format, then replace this block

/1 with appropriate code for reading your format.

/1l First read | values

done = fal se;

index = 0;

infile = fopen(ifile, “rb”);

if (infile==NULL) perror (“Error opening file to read”);

264 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

whi | e(! done)

{
il =fgetc(infile); // read the first byte
i f(i1==EOF) break;
i2 = fgetc(infile); // read the next byte
i f(i2==EOF) break;
i val ue=i 1+i 2*256; /1 put the two bytes together
/1 note that the above format is for a little endian
/'l processor such as Intel. Reverse the order for
/1 a big endian processor such as Mdtorola, HP, or Sun
i dat a[i ndex++] =i val ue;
i f (i ndex==MAXSAMPLES) br eak;

}

fclose(infile);

/1 Then read Q val ues
index = 0;
infile = fopen(qgfile, “rb”);
if (infile==NULL) perror (“Error opening file to read");
whi | e(! done)
{
il =fgetc(infile); // read the first byte
i f(i1==EOF) break;
i2 = fgetc(infile); // read the next byte
i f(i2==EOF) break;
i val ue=i 1+i 2*256; /1 put the two bytes together
/1 note that the above format is for a little endian
/'l processor such as Intel. Reverse the order for
/1 a big endian processor such as Mdtorola, HP, or Sun
gdat a[i ndex++] =i val ue;
i f (i ndex==MAXSAMPLES) br eak;
}

fclose(infile);

/1 Renmenber the nunber of sanples which were read fromthe file.

nunsanpl es = i ndex;

/1l Print the | and Qvalues to a text file. If you are
/1 having trouble, look in the file and see if your | and
/1 Qdata | ooks correct. Plot the data fromthis file if
/1 that hel ps you to diagnose the problem

FILE *outfile = fopen(ofile, “wW);

Creating and Downloading Waveform Files
Programming Examples

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

265

Creating and Downloading Waveform Files
Programming Examples

if (outfile==NULL) perror (“Error opening file to wite");
for (i ndex=0; index<numsanples; index++)
{

fprintf(outfile, “%, %l\n”, idata[index], qdata[index]);
}

fclose(outfile);

/1 The E443xB, E4438C, E8267C or E8267D all use big-endian
Il processors. |f your software is running on a little-endian
/'l processor such as Intel, then you will need to swap the
Il bytes in the data before sending it to the signal generator.

/1 The arrays ibuffer and gbuffer are used to hold the data
/1l after any byte swapping, shifting or scaling.

/1 In this exanple, we'll assume that the data is in the fornmat
/1 of the E443xB without markers. |In other words, the data

/1l is in the range 0-16383.

/1 0 gives negative full-scal e out put

/1 8192 gives 0 V output

/1 16383 gives positive full-scale output

/1 1f this is not the scaling of your data, then you will need
Il to scale your data appropriately in the next two bl ocks.

/1l ibuffer and gbuffer will hold the data in the E443xB format.
/1 No scaling is needed, however we need to swap the byte order
/1 on alittle endian conputer. Renpbve the byte swapping

/1 if you are using a big endian conmputer.

for (i ndex=0; index<numsanples; index++)

{
int ivalue = idata[index];
int gvalue = qdata[index];
i buf fer[index*2] = (ivalue >> 8) & OxFF; // high byte of i
i buf fer[index*2+1] = ivalue & OxFF; /1 low byte of i
gbuf f er[i ndex*2] = (qvalue >> 8) & OxFF; // high byte of g
gbuf fer[i ndex*2+1] = qval ue & OxFF; /1 low byte of q
}

/1l iqbuffer will hold the data in the E4438C, E8267C, E8267D

/1 format. In this format, the | and Q data is interleaved.
// The data is in the range -32768 to 32767.
11 - 32768 gives negative full-scal e output

266 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

11 0 gives 0 V output

11 32767 gives positive full-scal e output

/!l Fromthese ranges, it appears you shoul d offset the

I/ data by 8192 and scale it by 4. However, due to the
I/ interpolators in these products, it is better to scale
// the data by a number |ess than four. Commonly a good
Il choice is 70% of 4 which is 2.8.

/1 By default, the signal generator scales data to 70%
/1 1f you scale the data here, you may want to change the
/1l signal generator scaling to 100%

/1 Also we need to swap the byte order on a little endian
I/ conputer. This code also works for big endian order data
Il since it swaps bytes based on the order.

for (i ndex=0; index<numsanples; index++)

{
int iscaled = 2.8*(idata[index]-8192); // shift and scale
int gscaled = 2.8*(qdata[index]-8192); // shift and scale
i gbuf fer[index*4] = (iscaled >> 8) & OxFF; // high byte of i
i gbuf fer[index*4+1] = iscal ed & OxFF; /1 low byte of i
i gbuf fer[index*4+2] = (qgscaled >> 8) & OxFF; // high byte of g
i gbuf fer[index*4+3] = gscal ed & OxFF; // |ow byte of q

}

// Open a connection to wite to the instrunent

I NST i d=i open(i nst OpenString);

if (lid)

{
fprintf(stderr, “iopen failed (%)\n", instOpenString);
return -1;

/1 Declare variables which will be used |ater
int bytesToSend;

char s[20];

char cnd[200] ;

/1 The E4438C, E8267C and E8267D accept the E443xB format.
/1 so we can use this next section on any of these signal generators.
/1 However the E443xB format only uses 14 bits.

byt esToSend = nunsanpl es*2; /'l calculate the nunmber of bytes
sprintf(s, “%l", bytesToSend); // create a string s with that nunber of bytes

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 267

Creating and Downloading Waveform Files
Programming Examples

/1 The SCPI command has four parts.
/1 Part 1 = : MEM DATA “fil ename”,

11 Part 2 = length of Part 3 when witten to a string
11 Part 3 = length of the data in bytes. This is in s from above.
11 Part 4 = the buffer of data

// Build parts 1, 2, and 3 for the | data.

sprintf(cnd, “:MEM DATA \"ARBI: FILE1\", #%%", strlen(s), bytesToSend);
// Send parts 1, 2, and 3

iwite(id, cnd, strlen(cnd), 0, 0);

I/ Send part 4. Be careful to use the correct conmand here. |In many
/1l programm ng | anguages, there are two nmethods to send SCPl conmands:
11 Method 1 = stop at the first ‘0’ in the data

11 Method 2 = send a fixed nunber of bytes, ignoring ‘0" in the data.
/1 You nust find and use the correct command for Method 2.

iwite(id, ibuffer, bytesToSend, 0, 0);

// Send a termnating carriage return

iwite(id, “\n", 1, 1, 0);

/1 ldentical to the section above, except for the Q data.

sprintf(cnd, “:MEM DATA \"ARBQ FI LE1\", #%d%l”, strlen(s), bytesToSend);
iwite(id, cnd, strlen(cnd), 0, 0);

iwite(id, gbuffer, bytesToSend, 0, 0);

iwite(id, “\n", 1, 1, 0);

printf(“Loaded FILEl using the E443xB format\n");

/1 The E4438C, EB8267C and E8267D have a newer faster format which
// allows 16 bits to be used. However this format is not accepted in
/1l the E443xB. Therefore do not use this next section for the E443xB.

printf(“Note: Loading FILE2 on a E443xB will cause \"ERROR 208, I/Oerror\”\n");

/1 ldentical to the | and Q sections above except

11 a) The | and Q data are interleaved

11 b) The buffer of 1+Qis twice as long as the | buffer was.

11 c) The SCPI conmand uses WFML instead of ARBI and ARBQ

byt esToSend = nunsanpl es*4;

sprintf(s, “%", bytesToSend);

sprintf(cnd, “:nmemdata \"WML: FILE2\", #%d%l”, strlen(s), bytesToSend);
iwite(id, cnd, strlen(cnd), 0, 0);

268 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

iwite(id, iqbuffer, bytesToSend, 0, 0);

iwite(id, “\n”, 1, 1, 0);

printf(“Loaded FILE2 using the E4438C, E8267C and E8267D format\n");
return O;

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 269

Creating and Downloading Waveform Files
Programming Examples

MATLAB Programming Examples

This section contains the following programming examples:

¢ “Creating and Storing I/Q Data” on page 270
¢ “Creating and Downloading a Pulse” on page 273

Creating and Storing 1/Q Data
On the documentation CD, this programming example’s name is “offset_iq_ml.m.”

This MATLAB programming example follows the same coding algorithm as the C++ programming
example “Creating and Storing Offset I/Q Data—Big and Little Endian Order” on page 246 and
performs the following functions:

¢ error checking

¢ data creation

¢ data normalization

* data scaling

* I/Q signal offset from the carrier (single sideband suppressed carrier signal)

* byte swapping and interleaving for little endian order data

e I and Q interleaving for big endian order data

¢ binary data file storing to a PC or workstation

* reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

function nain

% Usi ng MatLab this exanple shows how to

%1.) Create a sinple | Q waveform

% 2.) Save the waveforminto the Agilent MXG ESGE PSG Internal Arb fornat
% This format is for the N5182A, E4438C, EB8267C, and E8267D

% This format will not work with the earlier E443xB ESG

% 3.) Load the internal Arb format file into a MatlLab array

% 1.) Create Sinple [Q Si gnal *#* s ssssstsn sk ssnsn sk sk sk ssssnsndhss
% This signal is a single tone on the upper

% side of the carrier and is usually refered to as

% a Single Side Band Suppressed Carrier (SSBSC) signal.

%It is nothing nore than a cosine waveformin |

% and a sine waveformin Q

%

poi nts = 1000; % Nunber of points in the waveform

cycles = 101; % Determines the frequency offset fromthe carrier

phasel nc = 2*pi *cycl es/ poi nts;
phase = phaselnc * [0: points-1];

I wave cos(phase);

270 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Qnave = sin(phase);

% 2.) Save Wavef Orm in i NtErnal fOr At ***#* ks s kskxsxsxsksksknsnsxtsss
% Convert the | and Q data into the internal arb format

% The internal arb format is a single waveform containing interleaved |IQ
% data. The |/Q data is signed short integers (16 bits).

% The data has val ues scal ed between +-32767 where

% DAC Val ue Descri ption

% 32767 Maxi mum positive val ue of the DAC
% 0 Zero out of the DAC
% -32767 Maxi mum negati ve val ue of the DAC

% The internal arb expects the data bytes to be in Big Endian fornat.
% This is opposite of how short integers are saved on a PC (Little Endian).
% For this reason the data bytes are swapped before being saved.

% I nterl eave the | Q data

wavef orm(1: 2: 2*points) = |wave;
wavef orm(2: 2: 2*poi nts) = Qnave;
% | wave; Qnave] ;

owavef orm = waveforn(:)’;

% Normal i ze the data between +-1
waveform = waveform / nmax(abs(waveformn)); % Watch out for divide by zero.

% Scal e to use full range of the DAC

waveform = round(waveform * 32767); % Data is now effectively signed short integer val ues
% wavef orm = round(waveform* (32767 / max(abs(waveform))); % More efficient than previous two
st eps!

% PRESERVE THE BI T PATTERN but convert the waveformto

% unsi gned short integers so the bytes can be swapped.

% Note: Can’t swap the bytes of signed short integers in MatLab.
waveform = ui nt 16(nod(65536 + waveform 65536)); %

% I1f on a PC swap the bytes to Big Endian
if strcnp(conputer, ‘PCWN)

wavef orm = bitor(bitshift(waveform-8), bitshift(waveform8));
end

% Save the data to a file
% Note: The waveformis saved as unsigned short integers. However,
% the acual bit pattern is that of signed short integers and

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 271

Creating and Downloading Waveform Files
Programming Examples

% that is how the Agilent MXG ESG PSG interprets them
filename = ‘ C:\ Tenp\ PSGlestFil e’ ;
[FID, nessage] = fopen(filenane,’w);% Open a file to wite data

if FID==-1 error(‘Cannot Open File'); end
fwrite(Fl D waveform ' unsigned short’);%wite to the file
fclose(FID); %close the file

%3.) Load the internal Arb fOFMAt file *******xtxskskakskssnssssnkssssss
% This process is just the reverse of saving the waveform

% Read in waveform as unsigned short integers.

% Swap the bytes as necessary

% Convert to signed integers then nornalize between +-1

% De-interleave the |/Q Data

% Open the file and load the internal format data

[FID, nessage] = fopen(filenane,'r’);% Open file to read data
if FID==-1 error(‘Cannot Open File'); end

[internal Wave,n] = fread(FID, ‘uintl6’);%read the I1Qfile
fclose(FID);%close the file

i nternal Wave = internal Wave’; % Conver fromcolumm array to row array

% I1f on a PC swap the bytes back to Little Endian
if strcnp(conputer, ‘PCWN) %Put the bytes into the correct order

i nternal Wave= bi tor(bitshift(internal Wave, -8), bitshift(bitand(internal Wave, 255),8));
end

% convert unsigned to signed representation

i nternal Wave = doubl e(i nt er nal Wave);

tmp = (internal Wave > 32767.0) * 65536;

igwave = (internal Wave - tnp) ./ 32767; % and normalize the data

% De-Interleave the | Q data
Iwavel n = i gWave(1:2:n);
Qnavel n = i g\Wave(2: 2:n);

272 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading a Pulse

NOTE This section applies only to the Agilent MXG and the PSG.

For the Agilent MXG, the maximum frequency is 6 GHz, and the pulsepat.m program’s
SQURce: FREQuency 20000000000 value must be changed as required in the following
programs. For more frequency information, refer to the signal generator’s Data Sheet.

On the documentation CD, this programming example’s name is “pulsepat.m.”
This MATLAB programming example performs the following functions:

e I and Q data creation for 10 pulses

* marker file creation

* data scaling

¢ downloading using Agilent MXG/PSG Download Assistant functions (see “Using the Download
Utilities” on page 241 for more information)

=

% Script file: pulsepat.m

%

% Purpose:

%To calculate and download an arbitrary waveform file that simulates a
%simple antenna scan pulse pattern to the Agilent MXG/PSG vector signal generator.
%

% Define Variables:

% n -- counting variable (no units)

% t -- time (seconds)

% rise -- raised cosine pulse rise-time definition (samples)

% on -- pulse on-time definition (samples)

% fall -- raised cosine pulse fall-time definition (samples)

% i -- in-phase modulation signal

% q -- quadrature modulation signal

n=4; % defines the number of points in the rise-time and fall-time
=-1:2/n:1-2/n; % number of points translated to time

rise=(1+sin(t*pi/2))/2; % defines the pulse rise-time shape

on=ones(1,120); % defines the pulse on-time characteristics

fall=(1+sin(-t*pi/2))/2; % defines the pulse fall-time shape

off=zeros(1,896); % defines the pulse off-time characteristics

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 273

Creating and Downloading Waveform Files
Programming Examples

% arrange the i-samples and scale the amplitude to simulate an antenna scan
% pattern comprised of 10 pulses
i = .707*[rise on fall off...
[.9*[rise on fall off]]...
[.8*[rise on fall off]]...
[.7*[rise on fall off]]...
[.6*[rise on fall off]]...
[.5*[rise on fall off]]...
[.4*[rise on fall off]]...
[.3*[rise on fall off]]...
[.2*[rise on fall off]]...
[11

[.1*[rise on fall off]]];

% set the g-samples to all zeroes
q = zeros(1,10240);

% define a composite iq matrix for download to the Agilent MXG/PSG using the
% PSG Download Assistant
IQData = [i + (j * @;

% define a marker matrix and activate a marker to indicate the beginning of the waveform
Markers = zeros(2,length(IQData)); % fill marker array with zero, i.e no markers set

Markers(1,1) = 1; % set marker to first point of playback

% make a new connection to theAgilent MXG/PSG over the GPIB interface

io = agt_newconnection('gpib',0,19);

% verify that communication with the Agilent MXG/PSG has been established
[status, status_description, query_result] = agt_query(io,'*idn?");

if (status < 0) return; end

% set the carrier frequency and power level on the Agilent MXG/PSG using the Agilent MXG/PSG
% Download Assistant

274 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 20000000000");

[status, status_description] = agt_sendcommand(io, 'POWer 0");

% define the ARB sample clock for playback
sampclk = 40000000;

% download the ig waveform to the PSG baseband generator for playback

[status, status_description] = agt waveformload(io, IQData, 'pulsepat', sampclk, 'play', 'no_normscale',
Markers);

% turn on RF output power

[status, status_description | = agt_sendcommand(io, 'OUTPut:STATe ON')

You can test your program by performing a simulated plot of the in-phase modulation signal in
Matlab (see Figure 5-1 on page 275). To do this, enter plot (i) at the Matlab command prompt.

Figure 5-1 Simulated Plot of In-Phase Signal

08

0.7H 4

0.6H E

0.4H | 1
03]]

0.2H R

0 H

o] 2000 4000 6000 8000 10000 12000

The following additional Matlab M-file pulse programming examples are also available on the
Documentation CD-ROM for your Agilent MXG and PSG signal generator:

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 275

Creating and Downloading Waveform Files

Programming Examples

NOTE For the Agilent MXG, the SOURce: FREQuency 20000000000 value must be changed as
required in the following programs. For more information, refer to the Data Sheet.

barker.m

chirp.m

FM.m

nchirp.m

pulse.m

pulsedroop.m

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple 7-bit barker RADAR signal to the PSG vector signal
generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple compressed pulse RADAR signal using linear FM chirp to
the PSG vector signal generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a single tone FM signal with a rate of 6 KHz, deviation of

=/- 14.3 KH, Bessel null of dev/rate=2.404 to the Agilent MXG/PSG vector signal
generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple compressed pulse RADAR signal using non-linear FM
chirp to the PSG vector signal generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple pulse signal to the PSG vector signal generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple pulse signal with pulse droop to the PSG vector signal
generator.

276

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Visual Basic Programming Examples

Creating I/Q Data—Little Endian Order
On the documentation CD, this programming example’s name is “Create_IQData_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, uses little endian order
data, and performs the following functions:

¢ error checking

e I an Q integer array creation

e I an Q data interleaving

* byte swapping to convert to big endian order
* binary data file storing to a PC or workstation

Once the file is created, you can download the file to the signal generator using FTP (see “FTP
Procedures” on page 223).

B R R R R R R]

' Program Nane: Create_| QData

Program Description: This programcreates a sine and cosine wave using 200 |/ Q data
' sanples. Each | and Qvalue is represented by a 2 byte integer. The sanple points are
cal cul ated, scal ed using the AWPLI TUDE constant of 32767, and then stored in an array
' naned iqg_data. The AWVPLI TUDE scaling allows for full range |/Q nodul ator DAC val ues.

' Data nust be in 2's conpl emant, MSB/LSB big-endian format. |f your PC uses LSB/ MSB
format, then the integer bytes nust be swapped. This program converts the integer
array values to hex data types and then swaps the byte positions before saving the

' data to the 1QDataVB file.

B R R R R R R R TR

Private Sub Create_l QData()
Di mindex As |nteger

Di m AMPLI TUDE As | nt eger
Dim pi As Doubl e
DimloByte As Byte
Dim hi Byte As Byte
DimloHex As String
Dim hi Hex As String
strSrc As String
nunPoi nts As | nteger
Fi | eHandl e As | nteger
data As Byte
ig_data() As Byte
strFilename As String

O 0 0 00 Q0

m
m
m
m
m
m

strFilename = "C:\ | Q Dat avB"

Const SAMPLES = 200 " Nunber of sanple PAIRS of | and Qintegers for the waveform

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 277

Creating and Downloading Waveform Files
Programming Examples

AMPLI TUDE = 32767 ' Scale the anplitude for full range of the signal generators
" 1/ Q nodul ator DAC
pi = 3.141592

DimintlQData(0 To 2 * SAMPLES - 1) 'Array for | and Q integers: 400
ReDimiqg_data(0 To (4 * SAMPLES - 1)) 'Need MSB and LSB bytes for each integer value: 800

"Create an integer array of I/Qpairs

For index = 0 To (SAMPLES - 1)
intlQData(2 * index) = Clnt(AWMPLITUDE * Sin(2 * pi * index / SAWPLES))
intlQData(2 * index + 1) = Clnt(AWPLI TUDE * Cos(2 * pi * index / SAMPLES))
Next index

' Convert each integer value to a hex string and then wite into the ig_data byte array
' MSB, LSB ordered
For index = 0 To (2 * SAMPLES - 1)

strSrc = Hex(intlQData(index)) 'convert the integer to a hex val ue

If Len(strSrc) <> 4 Then
strSrc = String(4 - Len(strSrc), "0") & strSrc 'Convert to hex format i.e "800F
End | f "Pad with 0's if needed to get 4
‘characters i.e '0' to "0000"

hiHex = Md$(strSrc, 1, 2) "Get the first two hex val ues (MSB)
loHex = Md$(strSrc, 3, 2) "Get the next two hex val ues (LSB)
loByte = CByte("&H" & | oHex) 'Convert to byte data type LSB
hi Byte = CByte("&H"' & hiHex) 'Convert to byte data type MSB

ig_data(2 * index) = hiByte "MSB into first byte
ig_data(2 * index + 1) = |oByte 'LSB into second byte

Next index

"Now wite the data to the file

Fil eHandl e = FreeFile() "CGet a file nunber

nunPoi nts = UBound(iq_data) 'Get the nunmber of bytes in the file

Open strFilenane For Binary Access Wite As #FileHandl e Len = nunPoints + 1

278 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

On Error GoTo file_error
For index = 0 To (nunPoints)
data = i q_data(index)
Put #FileHandl e, index + 1, data 'Wite the I/Qdata to the file
Next i ndex
Cl ose #Fil eHandl e
Call MsgBox("Data witten to file " & strFil enane, vbOKOnly, "Downl oad")
Exit Sub
file_error:
MsgBox Err. Description

O ose #Fil eHandl e

End Sub

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 279

Creating and Downloading Waveform Files
Programming Examples

Downloading 1/Q Data

On the signal generator’s documentation CD, this programming example’s name is
“Dowmnload_File_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, downloads the file created
in “Creating I/Q Data—Little Endian Order” on page 277 into non-volatile memory using a LAN
connection. To use GPIB, replace the instOpenString object declaration with “GPIB::19::INSTR”. To
download the data into volatile memory, change the instDestfile declaration to
“USER/BBG1/WAVEFORM/”.

NOTE The example program listed here uses the VISA COM IO API, which includes the
WriteIEEEBlock method. This method eliminates the need to format the download command
with arbitrary block information such as defining number of bytes and byte numbers. Refer
to “SCPI Command Line Structure” on page 218 for more information.

This program also includes some error checking to alert you when problems arise while trying to
download files. This includes checking to see if the file exists.

RS R R R R R R R R S R R R R R R R R R R R R R R E R EEE R R R EEE R R R R R RS RS EE RS EREEEEEEEEEEEEEEEEERS]
Program Nane: Downl oad_Fil e
Program Description: This programuses Mcrosoft Visual Basic 6.0 and the Agilent
VISA COM 1/ O Library to downl oad a waveformfile to the signal generator.

The program downl oads a file (the previously created ‘1 QDataVB file) to the signal
generator. Refer to the Programm ng Guide for information on binary

data requirenments for file downl oads. The waveformdata '1Q DataVB' is

downl oaded to the signal generator's non-vol atile nenory(NVWM

" /| USER/ WAVEFORM | Q Dat aVB". For volatile nenory(WML) download to the

' /| USER/ BBGL/ WAVEFORM | Q _Dat aVB" directory.

You nust reference the Agilent VI SA COM Resource Manager and VI SA COM 1.0 Type
Library in your Visual Basic project in the Project/References nenu.

The VISA COM 1.0 Type Library, corresponds to VISACOMtlb and the Agilent

VI SA COM Resour ce Manager, corresponds to Agt RM DLL.

The VI SA COM 488.2 Formatted 1/0O 1.0, corresponds to the BasicFornattedl O dll
Use a statenment such as "DimlInstr As VisaConlib. Fornattedl O488" to

create the formatted I/ O reference and use

"Set Instr = New VisaConlib. Formattedl 0488" to create the actual object.

Uk ko kKR KR KRR kR Kk kR kR Kk kK Kk Kk Rk Rk Kk KK K Kk kK Kk kK kR Kk KKK K kK kK kK K Kk
| MPORTANT: Use the TCPIP address of your signal generator in the rm Open
declaraion. If you are using the GPIB interface in your project use "GPIB::19::|NSTR'
in the rm Open decl aration.

B R R

280 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Private Sub Downl oad_Fil e()
' The following four lines declare 10 objects and instantiate them
Dimrm As VisaConli b. Resour ceManager

Set rm = New Agil ent RM.i b. SRMO s

Di m Si gGen As Vi saConlib. For mat t edl 0488

Set SigGen = New Vi saConLib. Formattedl 0488

' NOTE: Use the | P address of your signal generator in the rm Open declaration
Set SigGen.|O = rm Qpen("TCPI PO: : 000. 000. 000. 000")

Di m data As Byte
Dimig_data() As Byte

Di m Fi | eHandl e As | nteger
Di m nunPoi nts As | nteger
Di mindex As Integer

Di m Header As String

Di m response As String
Dim hi Byte As String
Dim |l oByte As String
Dim strFilenane As String

strFilename = "C:\1 QDataVB" ‘File Nanme and | ocation on PC

‘Data will be saved to the signal generator’s NVWM
‘| USER/ WAVEFORM | Q Dat aVB directory.

Fil eHandl e = FreeFile()

On Error GoTo errorhandl er

Wth SigGen 'Set up the signal generator to accept a downl oad
.1 O Ti meout = 5000 ' Ti neout 50 seconds
.WiteString "*RST" ' Reset the signal generator.

End Wth

nunPoints = (FileLen(strFilenane)) 'Get nunmber of bytes in the file: 800 bytes

ReDimiqg_data(0 To nunPoints - 1) ‘Dinmension the ig_data array to the
"size of the 1Q DataVvB file: 800 bytes

Qpen strFilenane For Binary Access Read As #FileHandle 'Open the file for binary read
On Error GoTo file_error

For index = 0 To (nunPoints - 1) "Wite the 1Q DataVB data to the iq_data array

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

281

Creating and Downloading Waveform Files
Programming Examples

Get #FileHandl e, index + 1, data ' (index+1) is the record nunber
i g_data(index) = data
Next index
O ose #FileHandl e "Close the file

"Wite the command to the Header string. NOTE: syntax
Header = "MEM DATA ""/USER/ WAVEFORM | Q Dat avB"", "

"Now write the data to the signal generator's non-volatile nenory (NVWFM

Si gGen. Wi t el EEEBl ock Header, iq_data

Si gGen. WiteString "*OPC?" "Wait for the operation to conplete
response = SigGen. ReadString ' Signal generator reponse to the OPC? query
Cal | MsgBox("Data downl oaded to the signal generator", vbOKOnly, "Download")
Exit Sub
errorhandl er:
MsgBox Err. Description, vbExclamation, "Error Cccurred", Err.HelpFile, Err.Hel pContext
Exit Sub
file_error:
Call MsgBox(Err.Description, vbOKOnly) 'Display any error nessage
d ose #FileHandl e
End Sub

282 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

HP Basic Programming Examples

This section contains the following programming examples:

¢ “Creating and Downloading Waveform Data Using HP BASIC for Windows®” on page 283

¢ “Creating and Downloading Waveform Data Using HP BASIC for UNIX” on page 286

¢ “Creating and Downloading E443xB Waveform Data Using HP BASIC for Windows” on page 288
¢ “Creating and Downloading E443xB Waveform Data Using HP Basic for UNIX” on page 290

Creating and Downloading Waveform Data Using HP BASIC for Windows®
On the documentation CD, this programming example’s name is “hpbasicWin.txt.”

The following program will download a waveform using HP Basic for Windows into volatile ARB
memory. The waveform generated by this program is the same as the default SI NE_TEST WM
waveform file available in the signal generator’s waveform memory. This code is similar to the code
shown for BASIC for UNIX but there is a formatting difference in line 130 and line 140.

To download into non-volatile memory, replace line 190 with:
190 OUTPUT @PSG USING "#K";""MMEM:DATA "'NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one file in
2’s compliment form and a marker file is associated with this I/Q waveform file.

In the Qut put commands, USI NG “#, K' formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K’ instructs HP Basic to output the following numbers or strings in
the default format.

10 ! RE-SAVE "BASIC Wn_file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER I nt_array(1: Num poi nts*2)

40 DEG

50 FOR 1 =1 TO Num_poi nts*2 STEP 2

60 Int_array(l)=INT(32767*(SI N(1*360/ Num poi nts)))
70 NEXT |

80 FOR 1 =2 TO Num_poi nts*2 STEP 2

90 Int_array(l)=INT(32767*(COS(|*360/ Num poi nts)))
100 NEXT |

110 PRINT "Data Cenerated"

120 Nbyt es=4* Num poi nt s

130 ASSIGN @°SG TO 719

140 ASSIGN @SGb TO 719; FORVAT MSB FI RST
150 Nbyt es$=VAL$(Noyt es)

160 Ndi gi t S=LEN(Nbyt es$)

Windows and MS Windows are U.S registered trademarks of Microsoft Corporation.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 283

Creating and Downloading Waveform Files
Programming Examples

170
180
190
200
210
220
230
240
250
260
270
280
290

Ndi gi t s$=VAL$(Ndi gi t s)

VAIT 1
QUTPUT
QUTPUT
QUTPUT
VAIT 1
QUTPUT
QUTPUT

@SG USING "#, K"; ": MVEM DATA ""WFML: data_file"", #"
@SG USING "#, K'; Ndi gi ts$
@SG USI NG "#, K'; Nbyt es$

@SCo; I nt _array(*)
@rSG END

ASSI GN @sSG TO *
ASSI GN @SG TO *

PRI NT

PRINT "*END*"

END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an IO path to the signal generator using GPIB. 7 is the address of the GPIB card in the computer,
and 19 is the address of the signal generator. This I0 path is used to send ASCII data to the signal
generator.

140: Opens an I0 path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file, data_fil e, that
will receive the waveform data. The name, data_file, will appear in the signal generator’s memory
catalog.

200 to 210: Sends the rest of the ASCII header.

284 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Program Comments (Continued)

Creating and Downloading Waveform Files
Programming Examples

230: Sends the binary data. Note that PSGb is the binary I0 path.
240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

285

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading Waveform Data Using HP BASIC for UNIX
On the documentation CD, this programming example’s name is “hpbasicUx.txt.”

The following program shows you how to download waveforms using HP Basic for UNIX. The code is
similar to that shown for HP BASIC for Windows, but there is a formatting difference in line 130 and
line 140.

To download into non-volatile memory, replace line 190 with:
190 OUTPUT @PSG USING "#K";""MMEM:DATA "'NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one file in
2’s compliment form and a marker file is associated with this I/Q waveform file.

In the Qut put commands, US| NG “#, K' formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP BASIC to output the following numbers or strings in
the default format.

10 ! RE-SAVE "UNI X file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER I nt _array(1: Num poi nt s*2)

40 DEG

50 FOR 1 =1 TO Num poi nts*2 STEP 2

60 Int_array(l)=INT(32767*(SI N(I*360/ Num points)))
70 NEXT |

80 FOR 1 =2 TO Num poi nts*2 STEP 2

90 Int_array(l)=INT(32767*(COS(|*360/ Num points)))
100 NEXT |

110 PRI NT "Data generated "

120 Nbyt es=4* Num _poi nt s

130 ASSI GN @SG TO 719; FORVAT ON

140 ASSI GN @SCGh TO 719; FORVAT OFF
150 Nbyt es$=VAL$(Nbyt es)

160 Ndi gi t S=LEN(Nbyt es$)

170 Ndi gi t s$=VAL$(Ndi gi t s)

180 VAIT 1

190 OQUTPUT @PSG USI NG "#, K'; ": MVEM DATA ""WFML: data_file"", #"
200 QUTPUT @PSG USI NG "#, K'; Ndi gi t s$
210 OUTPUT @PSG USI NG "#, K'; Nbyt es$

220 WAIT 1
230 QUTPUT @PSCGh; I nt_array(*)
240 WAIT 2

241 QUTPUT @PSG, END
250 ASSI BN @sG TO *
260 ASSI GN @SCGb TO *
270 PRI NT

280 PRI NT "*END*"

286 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

290 END

Creating and Downloading Waveform Files
Programming Examples

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an IO path to the signal generator using GPIB. 7 is the address of the GPIB card in the computer,
and 19 is the address of the signal generator. This I0 path is used to send ASCII data to the signal
generator.

140: Opens an IO path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file, data_fil e, that
will receive the waveform data. The name, data_file, will appear in the signal generator’s memory
catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that PSGb is the binary IO path.

240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

287

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading E443xB Waveform Data Using HP BASIC for Windows
On the documentation CD, this programming example’s name is “e443xb_hpbasicWin2.txt.”

The following program shows you how to download waveforms using HP Basic for Windows into
volatile ARB memory. This program is similar to the following program example as well as the
previous examples. The difference between BASIC for UNIX and BASIC for Windows is the way the
formatting, for the most significant bit (MSB) on lines 110 and 120, is handled.

To download into non-volatile ARB memory, replace line 160 with:
160 OUTPUT @ESG USING "#,K";"MMEM:DATA ""NVARBI:testfile"", #"
and replace line 210 with:

210 OUTPUT @ESG USING "#,K";""MMEM:DATA "'NVARBQ:testfile"", #"

First, the I waveform data is put into an array of integers called | wf m dat a and the Q waveform
data is put into an array of integers called Qwfm_data. The variable Noyt es is set to equal the
number of bytes in the I waveform data. This should be twice the number of integers in | wf m dat a,
since an integer is 2 bytes. Input integers must be between 0 and 16383.

In the Qut put commands, US| NG “#, K' formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K’ instructs HP Basic to output the following numbers or strings in
the default format.

10 | RE-SAVE "ARB_IQ Wn_file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER | wf m dat a(1: Num _poi nts), QM m dat a(1: Num_poi nt s)

40 DEG

50 FOR 1=1 TO Num poi nts

60 I wf m dat a(1) =I NT(8191*(SI N(| *360/ Num poi nt s)) +8192)
70 QuM m dat a(1) =I NT(8191* (COS(| *360/ Num poi nt s)) +8192)
80 NEXT |

90 PRI NT "Data Cenerated"

100 Nbyt es=2* Num _poi nt s

110 ASSI GN @sg TO 719

120 I ASSI GN @sgb TO 719; FORVAT MSB FI RST

130 Nbyt es$=VAL$(Nbyt es)

140 Ndi gi t S=LEN(Nbyt es$)

150 Ndi gi t s$=VAL$(Ndi gi ts)

160 OQUTPUT @Esg USI NG "#, K';": MVEM DATA ""ARBI : fil e_nane_1"", #"
170 OUTPUT @Esg USING "#, K'; Ndi gi t s$

180 OUTPUT @Esg USING "#, K'; Noyt es$

190 OQUTPUT @Esgb; | wf m dat a(*)

200 OUTPUT @Esg; END

210 QUTPUT @Esg USI NG "#, K'; ": MVEM DATA ""ARBQ fil e_nane_1"", #"
220 OUTPUT @Esg USING "#, K'; Ndi gi t s$

230 OUTPUT @Esg USI NG "#, K'; Nbyt es$

240 QUTPUT @Esgb; QM m dat a(*)

288 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

250
260
270
280
290
300

Creating and Downloading Waveform Files

QUTPUT @sg; END
ASSI GN @sg TO *
ASSI GN @sgb TO *
PRI NT

PRI NT **END*"
END

Program Comments

Programming Examples

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.
40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300: See the table on page 284 for program comments.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

289

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading E443xB Waveform Data Using HP Basic for UNIX
On the documentation CD, this programming example’s name is “e443xb_hpbasicUx2.txt.”

The following program shows you how to download waveforms using HP BASIC for UNIX. It is similar
to the previous program example. The difference is the way the formatting for the most significant bit
(MSB) on lines is handled.

First, the I waveform data is put into an array of integers called | W m dat a and the Q waveform
data is put into an array of integers called QA m dat a. The variable Noytes is set to equal the
number of bytes in the I waveform data. This should be twice the number of integers in | wf m dat a,
since an integer is represented 2 bytes. Input integers must be between 0 and 16383.

In the Qut put commands, USI NG “#, K' formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP BASIC to output the following numbers or strings in
the default format.

10 ! RE-SAVE "ARB_IQ file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER | wf m dat a(1: Num poi nts), Qs m dat a(1: Num_poi nt's)

40 DEG

50 FOR | =1 TO Num poi nts

60 I'wf m data(l)=I NT(8191*(SI N(|*360/ Num _poi nts)) +8192)
70 Quf m dat a(1) =1 NT(8191*(COS(| *360/ Num _poi nts)) +8192)
80 NEXT |

90 PRINT "Data Cenerated"

100 Nbyt es=2* Num poi nt s

110 ASSIGN @sg TO 719; FORVAT ON

120 ASSIGN @sgb TO 719; FORMAT OFF
130 Nbyt es$=VAL$(Noyt es)

140 Ndi gi t S=LEN(Nbyt es$)

150 Ndi gi t s$=VAL$(Ndigi ts)

160 OUTPUT @Esg USING "#, K";": MVEM DATA ""ARBI : fil e_name_1"", #"
170 OUTPUT @sg USI NG "#, K'; Ndi gi t s$
180 OUTPUT @sg USI NG "#, K'; Nbytes$
190 QUTPUT @sgb; | wf m data(*)

200 OUTPUT @Esg; END

210 OUTPUT @sg USING "#, K";": MVEM DATA ""ARBQ fil e_name_1"", #"
220 OUTPUT @sg USI NG "#, K'; Ndi gi t s$
230 OUTPUT @sg USING "#, K'; Nbytes$
240 OQUTPUT @Esgh; QM m dat a(*)

250 OUTPUT @Esg; END

260 ASSIGN @sg TO *

270 ASSIGN @sgb TO *

280 PRINT

290 PRINT "*END*"

290 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

300 END

Program Comments

Creating and Downloading Waveform Files

Programming Examples

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.
40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300 See the table on page 287 for program comments.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

291

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

Troubleshooting Waveform Files

Symptom

Possible Cause

ERROR 224, Text file busy

Attempting to download a waveform that has the same name as the waveform
currently being played by the signal generator.

To solve the problem, either change the name of the waveform being downloaded
or turn off the ARB.

ERROR 628, DAC over range

The amplitude of the signal exceeds the DAC input range. The typical causes are
unforeseen overshoot (DAC values within range) or the input values exceed the
DAC range.

To solve the problem, scale or reduce the DAC input values. For more information,
see “DAC Input Values” on page 199.

ERROR 629, File format invalid

The signal generator requires a minimum of 60 samples to build a waveform and
the same number of I and Q data points.

ERROR -321, Out of memory

There is not enough space in the ARB memory for the waveform file being
downloaded.

To solve the problem, either reduce the file size of the waveform file or delete
unnecessary files from ARB memory. Refer to “Waveform Memory” on page 209.

No RF Output

The marker RF blanking function may be active. To check for and turn RF blanking
off, refer to “Configuring the Pulse/RF Blank (Agilent MXG)” on page 293 and
“Configuring the Pulse/RF Blank (ESG/PSG)” on page 293. This problem occurs
when the file header contains unspecified settings and a previously played
waveform used the marker RF blanking function.

For more information on the marker functions, see the User’s Guide.

Undesired output signal

Check for the following:

® The data was downloaded in little endian order. See “Little Endian and Big
Endian (Byte Order)” on page 197 for more information.

® The waveform contains an odd number of samples. An odd number of samples
can cause waveform discontinuity. See “Waveform Phase Continuity” on
page 206 for more information.

292

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

Configuring the Pulse/RF Blank (Agilent MXG)

If the default marker is used,
m toggle the Pulse/RF Blank (None)
softkey to None. For more

information on markers, refer to
¢ “Marker File” on page 203.

NModulation fode Arb Arb_Setup 7
N ARE ARE Sample Clock
IV (IR on 125, 0000000G0rHz
Real Time I/0 R Arb Harkers Harker Routing |
Basebandm LaeformM Reference Setupy] — > Pulse/FF Blank
Marker Polaritus (Hane)™
Havefarm Real-time Moise
Seament.s?| Setup) ALC Hold
e PPN VN pl Harker Routino (Hone)™
Loverern Byt
Sequences et Markerse “/’N‘\.‘
- Marker
ARE Setupy Utilities™ M
:nore 1of 2 fore 1 of 2

SCPI commands:

[: SOURce] : RAD of 1] : ARB: MDESti nat i on: PULSe NONE| ML| M| MB| M4
[: SOURce] : RAD o[1] : ARB: MDESt i nat i on: PULSe?

For details on each key, use the key help. Refer to “Setting the Help Mode (Agilent MXG)” on page 18 and the User’s Guide. For
additional SCPI command information, refer to the SCPI Command Reference.

Configuring the Pulse/RF Blank (ESG/PSG)

Mode Setup SCPI commands:
Hardkey [: SOURce] : RADI o: ARB: MDESt i nat i on: PULSe NONE| ML| M2| MB| Mt
¢ [: SOURce] : RAD o: ARB: MDESt i nat i on: PULSe?
If the default marker is
Arb ALGN . Pulse/RF Blank,|g—USed, toggle the
on Marker Polaritum » i (None)™ Pulse/RF Blank (None)
J softkey to None. For
) more information on
1DESBSHlﬁﬁg Reference Setupk Marker Routing QL%NEﬂéC)'D markers, refer to
“Marker File” on
page 203.
Waweform Lendth, Alterrate
9@ Amp Litudew
(5242887 (hone)
Moise Seed Haveform,|
Random Utilities
— Marker
ARE SetupM Utilitioe® —
4 More]]
(1 of 21

For details on each key, use the Key and Data Field Reference. For additional SCPI command information, refer to the SCPI Command
Reference.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 293

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

294 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

6 Creating and Downloading User-Data Files

NOTE Some features apply to only the E4438C with Option 001/601 or 002/602 and E8267D with

Option 601 or 602. These exceptions are indicated in the sections.

The following sections and procedures contain remote SCPI commands. For front panel key
commands, refer to the User’s Guide, Key and Data Field Reference (ESG, PSG, and
E8663B), or to the Key Help in the signal generator.

On the Agilent MXG, : MEM DATA enables file extraction. The Agilent MXG does not require
the use of the : MEMbry: DATA: UNPRot ect ed to enable file extraction. For more information,
refer to the SCPI Command Reference.

This chapter explains the requirements and processes for creating and downloading user-data, and
contains the following sections:

“User File Data (Bit/Binary) Downloads (E4438C and E8267D)” on page 303
“Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)” on page 326
“FIR Filter Coefficient Downloads (E4438C and E8267D)” on page 340
“Save and Recall Instrument State Files” on page 343

“User Flatness Correction Downloads Using C++ and VISA” on page 354
“Data Transfer Troubleshooting (E4438C and E8267D Only)” on page 358

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 295

Creating and Downloading User-Data Files

Overview

Overview

User data is a generic term for various data types created by the user and stored in the signal
generator. This includes the following data (file) types:

NOTE For the Agilent MXG: Bit, PRAM, and FIR Filter State data (file) types are not applicable.

Bit

Binary

PRAM

FIR Filter
State

User Flatness
Correction

This file type lets the user download payload data for use in streaming or framed
signals. It lets the user determine how many bits in the file the signal generator
uses.

This file type provides payload data for use in streaming or framed signals. It
differs from the bit file type in that you cannot specify a set number of bits.
Instead the signal generator uses all bits in the file for streaming data and all bits
that fill a frame for framed data. If there are not enough bits to fill a frame, the
signal generator truncates the data and repeats the file from the beginning.

With this file type, the user provides the payload data along with the bits to
control signal attributes such as bursting. This file type is available for only the
real-time Custom and TDMA modulation formats.

This file type stores user created custom filters.

This file type lets the user store signal generator settings, which can be recalled.
This provides a quick method for reconfiguring the signal generator when
switching between different signal setups.

This file type lets the user store amplitude corrections for frequency points that
the signal generator uses during list sweeps.

Prior to creating and downloading files, you need to take into consideration the file size and the
amount of remaining signal generator memory. For more information, see “Signal Generator Memory”

on page 297

296

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Signal Generator Memory

Creating and Downloading User-Data Files

The signal generator provides two types of memory, volatile and non-volatile.

Signal Generator Memory

NOTE On the Agilent MXG the non-volatile memory is also referred to as internal media and

external media (USB).

User BIT, user FIR folders and User PRAM references are only applicable to the E4438C with
Options 001/601 or 002/602 and E8267D with Options 601 or 602.

Volatile Random access memory that does not survive cycling of the signal generator
power. This memory is commonly referred to as waveform memory (WFM1) or

pattern RAM (PRAM). Refer to Table 6-1 on page 297 for the file types that share

this memory:

Table 6-1 Signal Generators and Volatile Memory Types

Volatile Memory Type Model of Signal Generator
N5182A with E4438C with E8267D Option | All Other
Option 651, Option 001/601 601 or 602 models
652, or 654 or 002/602
/Q b'q X X X
Marker X X X X
File header X X X X
User PRAM - X X -
User Binary X X b'¢ b'¢
User Bit - X X -
Waveform Sequences X X X -
(multiple I/Q files played together)
Non-volatile Storage memory where files survive cycling of the signal generator power. Files

remain until overwritten or deleted. Refer to Table 6-2 on page 298 for the file

types that share this memory:

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

297

Creating and Downloading User-Data Files
Signal Generator Memory

Table 6-2 Signal Generators and Non-Volatile Memory Types

Non- Volatile Memory Type Model of Signal Generator

N5182A with E4438C with E8267D Option | All Other

Option 651, Option 001/601 601 or 602 models

652, or 654 or 002/602
rQ b'q X X X
Marker b'q b'q b'q b'q
File header b'q b'q b'q b'q
Sweep List b:q b:q X X
User PRAM - X X -
User Binary X X b'¢ b'¢
User Bit - X b'q -
User FIR - X b'q -
Instrument State b'q b'q X X
Waveform Sequences X X X -
(multiple I/Q files played together)

The following figure shows the signal generator’s directory structure for the user-data files.

Root directory

Agilent MXG (Only): Internal and external __
Storage media _..J
(i.e. Nonvolatile memory)

USER

l Volatile memory directory

J o o o >3

BIN STATE USERFLAT WAVEFORM
BBGL1
Agilent ESG, PSG, and E8663B (Only): Volatile memory data
Nonvolatile memory \
(WFMl)
—
__'J _'__J _'J __,J _'__J _'__J WAVEFORM/PRAM
BIN BIT FIR STATE USERFLAT WAVEFORM

298 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Signal Generator Memory

Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For example, a user-data file
with 60 bytes uses 1024 bytes of memory. For a file that is too large to fit into 1024 bytes, the signal
generator allocates additional memory in multiples of 1024 bytes. For example, the signal generator
allocates 3072 bytes of memory for a file with 2500 bytes.

3 x 1024 bytes = 3072 bytes of memory

As shown in the examples, files can cause the signal generator to allocate more memory than what is
actually used, which decreases the amount of available memory.

NOTE Each user-data file has a file header that uses 512 bytes (Agilent MXG), or 256 bytes
(ESG/PSG) of memory that is consumed in the first data block of 1024 bytes of memory for
each user-data file.

Non-Volatile Memory (Agilent MXG)

On the N5182A, non-volatile files are stored on the non-volatile internal signal generator memory
(i.e. internal media) or to the USB external media, if available. The Agilent MXG non-volatile internal
memory allocated according to a Microsoft compatible file allocation table (FAT) file system. The
Agilent MXG signal generator allocates non-volatile memory in clusters according to the drive size
(see table on page 300). For example, referring to table on page 300, if the drive size is 15 MB and
if the file is less than or equal to 4k bytes, the file uses only one 4 KB cluster of memory. For files
larger than 4 KB, and with a drive size of 15 MB, the signal generator allocates additional memory in
multiples of 4KB clusters. For example, a file that has 21,538 bytes consumes 6 memory clusters
(24,000 bytes).

For more information on default cluster sizes for FAT file structures, refer to table on page 300 and
to http://support.microsoft.com,.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 299

Creating and Downloading User-Data Files
Signal Generator Memory

Drive Size (logical volume) Cluster Size (Bytes)
(Minimum Allocation Size)

O MB - 15 MB 4K

16 MB - 127 MB 2K

128 MB - 255 MB 4K

256 MB - 511 MB 8K

512 MB - 1023 MB 16k

1024 MB - 2048 MB 32K

2048 MB - 4096 MB 64K

4096 MB - 8192 MB 128K

8192 MB - 16384 MB 256K

Non-Volatile Memory (ESG, PSG, and E8663B)

The signal generator allocates non-volatile memory in blocks of 512 bytes. For files less than or equal
to 512 bytes, the file uses only one block of memory. For files larger than 512 bytes, the signal
generator allocates additional memory in multiples of 512 byte blocks. For example, a file that has
21,5638 bytes consumes 43 memory blocks (22,016 bytes).

Memory Size

For the E4438C, E8267D, and E8663B, the maximum volatile memory size for user data is less than
the maximum size for waveform files. This is because the signal generator permanently allocates a
portion of the volatile memory for waveform markers. The values in Table 6-3 is the total amount of
memory after deducting the waveform marker memory allocation.

The amount of available memory, volatile and non-volatile, varies by signal generator option and the
size of the other files that share the memory. The baseband generator (BBG) options contain the
volatile memory. Table 6-3 shows the maximum available memory assuming that there are no other
files residing in memory.

300 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Table 6-3 Maximum Signal Generator Memory

Creating and Downloading User-Data Files
Signal Generator Memory

Volatile (WFM1/PRAM) Non- Volatile (NVWFM) Memory
Memory
Option Size Option Size
N5182A
651, 652, 654 40 MB Standard (N5181A) 8 MB
(BBG)
019 320 MB Standard (N5182A) 512 MB
EEEE EEEE USB memory stick user determined
E4438C, E8267D, and E8663B

001/601 32 MB Standard 14 MB
(BBG)?
002 (BBG)? 128 MB 005 (Hard disk)? 6 GB
602 (BBG) 256 MB

a. Options 001 and 002 apply to only the E4438C ESG.
b. Not available on the E8663B.

Checking Available Memory

Whenever you download a user-data file, you must be aware of the amount of remaining signal

generator memory. Table 6-4 shows to where each user-data file type is downloaded and from which
memory type the signal generator accesses the file data. Information on downloading a user-data file
is located within each user-data file section.

NOTE

The Bit, PRAM, and FIR filter state user-data (file) types only apply to the E4438C with

Option 001/601 or 002/602, and the E8267D with Option 601 or 602.

Table 6-4 User-Data File Memory Location

User- Data File Download Access
Type Memory Memory
Bit Non-volatile Volatile
Binary Non-volatile Volatile
PRAM Volatile Volatile

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

301

Creating and Downloading User-Data Files

Signal Generator Memory

Table 6-4 User-Data File Memory Location

User- Data File
Type

Download
Memory

Access
Memory

Instrument Non-volatile Non-volatile
State

FIR Non-volatile Non- volatile
Flatness Non-volatile Non- volatile

Bit and binary files increase in size when the signal generator loads the data from non-volatile to
volatile memory. For more information, see “User File Size” on page 308.

Use the following SCPI commands to determine the amount of remaining memory:
: MMEM CAT? “ WFML”

Volatile Memory

Non- Volatile Memory

The query returns the following information:

<menory used>, <menory renai ni ng>, <“file_names”>

. MEM CAT: ALL?

The query returns the following information:

<menory used>, <nenory renai ni ng>, <“‘file_nanmes”>

NOTE The signal generator calculates the memory values based on the number of bytes used by the
files residing in volatile or non-volatile memory, and not on the memory block allocation. To
accurately determine the available memory, you must calculate the number of blocks of
memory used by the files. For more information on memory block allocation, see “Memory

Allocation” on page 299.

302

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

User File Data (Bit/Binary) Downloads (E4438C and E8267D)

NOTE This section applies only to the E4438C with Option 001/601 or 002/602, and the E8267D
with Option 601 or 602.

The signal generator accepts externally created and downloaded user file data for real-time
modulation formats that have user file as a data selection (shown as <“file_name”> in the data
selection SCPI command). When you select a user file, the signal generator incorporates the user file
data (payload data) into the modulation format’s data fields. You can create the data using programs
such as MATLAB or Mathcad. The following table shows the available real-time modulation formats
by signal generator model:

E4438C ESG E2867D PSG
CDMA? TDMA® Custom®
Custom® W-CDMA?

GPs® -

a. Requires Option 401.

b. Real-time TDMA modulation formats require Option 402 and include EDGE, GSM, NADC, PDC,
PHS, DECT, and TETRA.

c. For ESG, requires Option 001/601 or 002/602, for PSG requires Option 601 or 602.

d. Requires Option 400.

e. Requires Option 409.

The signal generator uses two file types for downloaded user file data: bit and binary. With a bit file,
the signal generator views the data up to the number of bits specified when the file was downloaded.
For example, if you specify to use 153 bits from a 160 bit (20 bytes) file, the signal generator
transmits 153 bits and ignores the remaining 7 bits. This provides a flexible means in which to
control the number of transmitted data bits. It is the preferred file type and the easiest one to use.

With a binary file, the signal generator sees all bytes (bits) in a downloaded file and attempts to use
them. This can present challenges especially when working with framed data. In this situation, your
file needs to contain enough bits to fill a frame or timeslot, or multiple frames or timeslots, to end
on the desired boundary. To accomplish this, you may have to remove or add bytes. If there are not
enough bits remaining in the file to fill a frame or timeslot, the signal generator truncates the data
causing a discontinuity in the data pattern.

You download a user file to either the Bit or Binary memory catalog (directory). Unlike a PRAM file
(covered later in this chapter), user file data does not contain control bits, it is just data. The signal
generator adds control bits to the user file data when it generates the signal. There are two ways
that the signal generator uses the data, either in a continuous data pattern (unframed) or within

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 303

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

framed boundaries. Real-time Custom uses only unframed data, real-time TDMA modulation formats
use both types, and the others use only framed data.

NOTE For unframed data transmission, the signal generator requires a minimum of 60 symbols. For
more information, see “Determining Memory Usage for Custom and TDMA User File Data” on

page 309.

You create the user file to either fill a single timeslot/frame or multiple timeslots/frames. To create
multiple timeslots/frames, simply size the file with enough data to fill the number of desired
timeslots/frames

User File Bit Order (LSB and MSB)

The signal generator views the data from the most significant bit (MSB) to the least significant bit
(LSB). When you create your user file data, it is important that you organize the data in this manner.
Within groups (strings) of bits, a bit's value (significance) is determined by its location in the string.
The following shows an example of this order using two bytes.

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at
the far left of the bit string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at
the far right of the bit string.

Bit Position 1514 1312 11 10 98 7 6 5 4 3 21 0
Data 101101 1111101001

! X

MSB LSB

Bit File Type Data

The bit file is the preferred file type and the easiest to use. When you download a bit file, you
designate how many bits in the file the signal generator can modulate onto the signal. During the file
download, the signal generator adds a 10-byte file header that contains the information on the
number of bits the signal generator is to use.

Although you download the data in bytes, when the signal generator uses the data, it recognizes only
the bits of interest that you designate in the SCPI command and ignores the remaining bits. This
provides greater flexibility in designing a data pattern without the concern of using an even number
of bytes as is needed with the binary file data format. The following figure illustrates this concept.
The example in the figure shows the bit data SCPI command formatted to download three bytes of
data, but only 23 bits of the three bytes are designated as the bits of interest. (For more information
on the bit data SCPI command format, see “Downloading User Files” on page 312 and “Command for
Bit File Downloads” on page 315.)

304 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

SCPI Command :MEM:DATA:BIT <"file_name">,<bit_interest>,<datablock>
:MEM:DATA:BIT "3byte",23/# 1]3|&x|

Start block data number of bytes

ASCII representation of the data (3 bytes)

number of decimal digits

Bits of interest
Downloaded Data: 101011010001001100111100{0 ¢

299
ws” Y Yy

Ignored bit (LSB)

Byte 1 Byte 2 Byte 3
Hex Value: 5A 26 78
ASCII Representation: Z & X

The following figure shows the same downloaded data from the above example as viewed in the
signal generator’s bit file editor (see the User’s Guide for more information) and with using an
external hex editor program.

SCPI command to download the data :MEM:DATA:BIT "3byte",23,#13Z&x

As Seen in the Signal Generator’s Bit File Editor

FREQUERCY AMPLITUOE

-136.00 cen
r noo|| _ Designated number of bits

Bit File Editor Pos:0 (Size: 23 }’ 2EYTE Hex values
/

4.000 000 000 00 sz

0ffset. Binary Data/ Hex Data
1} W01 1010 0010 0110 0111 100 I \ SAZ67E }
20
Bit data

As Seen in a Hex Editor
! x Ed Designated number of bits (hex value = 23 decimal)

S8 01|00 00 00 00 00 00 00 17)5a 26 78

\ﬁ
N v

10 byte file header 3 bytes of data
(added by signal generator)

In the bit editor, notice that the ignored bit of the bit-data is not displayed, however the hex value
still shows all three bytes. This is because bits 1 through 7 are part of the first byte, which is shown
as ASCII character x in the SCPI command line. The view from the hex editor program confirms that
the downloaded three bytes of data remains unchanged. To view a downloaded bit file with an
external hex editor program, FTP the file to your PC/UNIX workstation. For information on how to
FTP a file, see “FTP Procedures” on page 319.

Even though the signal generator views the downloaded data on a bit basis, it groups the data into
bytes, and when the designated number of bits is not a multiple of 8 bits, the last byte into one or

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 305

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

more 4-bit nibbles. To make the last nibble, the signal generator adds bits with a value of zero. The
signal generator does not show the added bits in the bit editor and ignores the added bits when it
modulates the data onto the signal, but these added bits do appear in the hex value displayed in the
bit file editor. The following example, which uses the same three bytes of data, further demonstrates

how the signal generator displays the data when only two bits of the last byte are part of the bits of
interest.

SCPI command to download the data :MEM:DATA:BIT "3byte",18,#13Z&x

Designated 18 bits
Downloaded Data: J01011010,00100110,01/11100 O\LSB

wse. Y Y W—j

Byte 1 Byte 2 Byte 3
Hex Value: 5A 26 78

As Seen in the Signal Generator’s Bit File Editor

FREQUENCY AMPLITUDE .
Added bits
4.000 000 000 00 &4z | -136.00 den as seen in
i the h |
Designated number of bits HHD € hexvalue
‘ / ‘ Hex value changes to 5A264 V/
Y a—
Bit File Editor Fos:0 (5ize:1a) BYIE 610110100010011001
Offset . Binary Daty” Hex Data) W—A—V—)
H 23 E101 1010 0010 0110 m] _ \ SQ?EM), Byte 1 Byte 2 Nibble
Designated bits 5A 26 4

As Seen in a Hex Editor Designated number of bits (hex value = 18 decimal)

58 01|00 OO0 0O 00 00 00 00 12} 5a 26 78)_
T ——A
N4 Y
10 byte file header 3 bytes of data
(added by signal generator)

Notice that the bit file editor shows only two bytes and one nibble. In addition, the signal generator
shows the nibble as hex value 4 instead of 7 (78 is byte 3—ASCII character x in the SCPI command
line). This is because the signal generator sees bits 17 and 18, and assumes bits 19 and 20 are 00. As
viewed by the signal generator, this makes the nibble 0100. Even though the signal generator
extrapolates bits 19 and 20 to complete the nibble, it ignores these bits along with bits 21 through
24. As seen with the hex editor program, the signal generator does not actually change the three
bytes of data in the downloaded file.

For information on editing a file after downloading, see “Modifying User File Data” on page 318.

306 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Binary File Type Data

With the Binary file type, the signal generator sees all of the bytes within the downloaded file and
attempts to use all of the data bits. When using this file type, the biggest challenge is creating the
data, so that the signal generator uses all of the bits (bytes) contained within the file. This is
referred to as using an even number of bytes. The method of creating the user file data pattern
depends on whether you are using unframed or framed data. The following two sections illustrate the
complexities of using the binary file format. You can eliminate these complexities by using the bit file
format (see “Bit File Type Data” on page 304).

Unframed Binary Data

When creating unframed data, you must think in terms of bits per symbol; so that your data pattern
begins and ends on the symbol boundary, with an even number of bytes. For example, to use 16QAM
modulation, the user file needs to contain 32 bytes:

¢ enough data to fill 16 states 4 times

¢ end on a symbol boundary

e create 64 symbols (the signal generator requires a minimum of 60 symbols for unframed data)
To do the same with 32QAM, requires a user file with 40 bytes.

When you do not use an even number of bytes, the signal generator repeats the data in the same
symbol where the data stream ends. This means that your data would not end on the symbol
boundary, but during a symbol. This makes it harder to identify the data content of a symbol. The
following figure illustrates the use of an uneven number of bytes and an even number of bytes.

Unframed Data
MSB LSB

Datapattern: 1 011 011011001100

Uneven Number of Bytes

32QAM 5 bits/symbol: 1 01101101210011001011011011001100/101
Symbol Symbol Symbol 'Symbol Symbol Symbol Syfnbol

: Data repeats during a symbol

Using an uneven number of bytes makes it harder to identify the data within a symbol.

Even Number of Bytes

: Data repeats at the symbol boundary

16QAM 4 bits/symbol: 1 01101 1011001100'1011011011001100 paa

Symbol Symbol Symbol Symbol ' Symbol Symbol Symbol Symbol repeats

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 307

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Framed Binary Data

When using framed data, ensure that you use an even number of bytes and that the bytes contain
enough bits to fill the data fields within a timeslot or frame. When there are not enough bits to fill
a single timeslot or frame, the signal generator replicates the data pattern until it fills the
timeslot/frame.

The signal generator creates successive timeslots/frames when the user file contains more bits than
what it takes to fill a single timeslot or frame. When there are not enough bits to completely fill
successive timeslots or frames, the signal generator truncates the data at the bit location where there
is not enough bits remaining and repeats the data pattern. This results in a data pattern
discontinuity. For example, a frame structure that uses 348 data bits requires a minimum file size of
44 bytes (352 bits), but uses only 43.5 bytes (348 bits). In this situation, the signal generator
truncates the data from bit 3 to bit O (bits in the last byte). Remember that the signal generator
views the data from MSB to LSB. For this example to have an even number of bytes and enough bits
to fill the data fields, the file needs 87 bytes (696 bits). This is enough data to fill two frames while
maintaining the integrity of the data pattern, as illustrated in the following figure.

Framed Data

Uneven Number of Bytes
(some data truncated)

Frame 1 Frame 2
cun| 348 data bits cn| Jou] 348 data bits |cu|
352 bits (44 bytes): 110100110110...01101111 LSB Frame 1 data repeated
/ Fram data Truncated data (bits 0-3)
MSB not enough bits remaining to fill the next frame

Even Number of Bytes

(all bits used)
Frame 1 Frame 2

‘Ctrl ‘ 348 data bits ‘ ctrl ‘ ‘Ctrl ‘ 348 data bits ‘ curl ‘

696 bits (87 bytes): 011101100110110101110100110110...01101111
Data fills both frames (348 bits per frame) with no truncated bits

For information on editing a file after downloading, see “Modifying User File Data” on page 318.

User File Size

You download user files into non-volatile memory. For CDMA, GPS, and W-CDMA, the signal
generator accesses the data directly from non-volatile memory, so the file size up to the maximum
file size (shown in Table 6-5) for these formats is limited only by the amount of available
non-volatile memory. As seen in the table, the baseband generator option does not affect these file
sizes.

For Custom and TDMA, however, when the signal generator creates the signal, it loads the data from
non-volatile memory into volatile memory, which is also the same memory that the signal generator
uses for Arb-based waveforms. For user data files, volatile memory is commonly referred to as
pattern ram memory (PRAM). Because the Custom and TDMA user files use volatile memory, their
maximum file size depends on the baseband generator (BBG) option and the amount of available

308 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

PRAM. (Volatile memory resides on the BBG.) Table 6-5 shows the maximum file sizes by modulation
format and baseband generator option.

Table 6-5 Maximum User File Size

Baseband Generator Option
Modulation
Format
001/601 002 602

a
Custom 800 kB 3.2 MB 6.4 MB
TDMA?
CDMAP
GPsP 10 kB 10 kB 10 kB
W-CDMAP

a.File size with no other files residing in volatile memory.
b.File size is not affected by the BBG option.

For more information on signal generator memory, see “Signal Generator Memory” on page 297. To
determine how much memory is remaining in non-volatile and volatile memory, see “Checking
Available Memory” on page 301.

Determining Memory Usage for Custom and TDMA User File Data

For Custom and TDMA user files, the signal generator uses both non-volatile and volatile
(PRAM/waveform) memory: you download the user file to non-volatile memory. To determine if there
is enough non-volatile memory, check the available non-volatile memory and compare it to the size of
the file to be downloaded.

After you select a user file and turn the format on, the signal generator loads the file into volatile
memory for processing:

e It translates each data bit into a 32-bit word (4 bytes).
The 32-bit words are not saved to the original file that resides in non-volatile memory.

e It creates an expanded data file named AUTOGEN_PRAM_1 in volatile memory while also
maintaining a copy of the original file in volatile memory. It is the AUTOGEN_PRAM_1 file that
contains the 32-bit words and accounts for most of the user file PRAM memory space.

e If the transmission is using unframed data and there are not enough bits in the data file to create
60 symbols, the signal generator replicates the data pattern until there is enough data for 60
symbols. For example, GSM uses 1 bit per symbol. If the user file contains only 24 bits, enough
for 24 symbols, the signal generator replicates the data pattern two more times to create a file
with 72 bits. The expanded AUTOGEN_PRAM_1 file size would show 288 bytes (72 bits x4
bytes/bit).

Use the following procedures to calculate the required amount of volatile memory for both framed
and unframed TDMA signals:

¢ C(Calculating Volatile Memory (PRAM) Usage for Unframed Data
e “Calculating Volatile Memory (PRAM) Usage for Framed Data” on page 310

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 309

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Calculating Volatile Memory (PRAM) Usage for Unframed Data

Use this procedure to calculate the memory size for either a bit or binary file. To properly
demonstrate this process, the procedure employs a user file that contains 70 bytes (560 bits), with
the bit file using only 557 bits.

1. Determine the AUTOGEN_PRAM_1 file size:
The signal generator creates a 32-bit word for each user file bit (1 bit equals 4 bytes).
Binary file 4 bytes x (70 bytes x 8 bits) = 2240 bytes
Bit file 4 bytes x 557 bits= 2228 bytes

2. Calculate the number of memory blocks that the AUTOGEN_PRAM_1 file will occupy:
Volatile memory allocates memory in blocks of 1024 bytes.
Binary file 2240 / 1024 = 2.188 blocks
Bit file 2228 / 1024 = 2.176 blocks

3. Round the memory block value to the next highest integer value.

For this example, the AUTOGEN_PRAM_1 file will use three blocks of memory for a total of 3072
bytes.

4. Determine the number of memory blocks that the copy of the original file occupies in volatile
memory.

For this example the bit and binary file sizes are shown in the following list:
¢ Binary file = 70 bytes < 1024 bytes = 1 memory block
* Bit file = 80 bytes < 1024 bytes = 1 memory block

Remember that a bit file includes a 10-byte file header.

5. Calculate the total volatile memory occupied by the user file data:

AUTOGEN_PRAM_1| Original File

3 blocks 1 block

1024 (3 + 1) = 4096 bytes

Calculating Volatile Memory (PRAM) Usage for Framed Data

Framed data is not a selection for Custom, but it is for TDMA formats. To frame data, the signal
generator adds framing overhead data such as tail bits, guard bits, and sync bits. These framing bits
are in addition to the user file data. For more information on framed data, see “Understanding
Framed Transmission For Real-Time TDMA” on page 320.

When using framed data, the signal generator views the data (framing and user file bits) in terms of
the number of bits per frame, even if only one timeslot within a frame is active. This means that the
signal generator creates a 32-bit word for each bit in a frame, for both active and inactive timeslots.

You can create a user file so that it fills a timeslot once or multiple times. When the user file fills a
timeslot multiple times, the signal generator creates the same number of frames as the number of
timeslots that the user file fills. For example, if a file contains enough data to fill a timeslot three
times, the signal produces three new frames before the frames repeat. Each new frame increases the

310 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

AUTOGEN_PRAM_1 file size. If you select different user files for the timeslots within a frame, the
user file that produces the largest number of frames determines the size of the AUTOGEN_PRAM_1
file.

Use this procedure to calculate the volatile memory usage for a GSM signal with two active timeslots
and two user binary files. One user file, 57 bytes, is for a normal timeslot and another, 37 bytes, is
for a custom timeslot.

1. Determine the total number of bits per timeslot.
A GSM timeslot consists of 156.25 bits (control and payload data).
2. Calculate the number of bits per frame.
A GSM frame consists of 8 timeslots: 8 x 156.25 = 1250 bits per frame
3. Determine how many bytes it takes to produce one frame in the signal generator:
The signal generator creates a 32-bit word for each bit in the frame (1 bit equals 4 bytes).
4 x 1250 = 5000 bytes
Each GSM frame uses 5000 bytes of PRAM memory.
4. Analyze how many timeslots the user file data will fill.

A normal GSM timeslot (TS) uses 114 payload data bits, and a custom timeslot uses 148 payload
data bits. The user file (payload data) for the normal timeslot contains 57 bytes (456 bits) and the
user file for the custom timeslot contains 37 bytes (296 bits).

Normal TS 456 / 114 = 4 timeslots
Custom TS 296 / 148 = 2 timeslots

NOTE Because there is an even number of bytes, either a bit or binary file works in this scenario.
If there was an uneven number of bytes, a bit file would be the best choice to avoid data
discontinuity.

5. Compute the number of frames that the signal generator will generate.

There is enough user file data for four normal timeslots and two custom timeslots, so the signal
generator will generate four frames of data.

6. Calculate the AUTOGEN_PRAM_1 file size:

Number of Frames| Bytes per Frame

4 5000

4 x 5000 = 20000 bytes

7. Calculate the number of memory blocks that the AUTOGEN_PRAM_1 file will occupy:
Volatile memory allocates memory in blocks of 1024 bytes.
20000 / 1024 = 19.5 blocks

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 311

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

8. Round the memory block value up to the next highest integer value.

For this example, the AUTOGEN_PRAM_1 file will use 20 blocks of memory for a total of 20480
bytes.

9. Determine the number of memory blocks that the original files occupy in volatile memory.

The files do not share memory blocks, so you must determine how many memory blocks each file
occupies.

Normal TS Custom TS

57 bytes = 1 block 37 bytes = 1 block

1 + 1 = 2 memory blocks

NOTE If the user file type is bit, remember to include the 10-byte file header in the file size.

10. Calculate the total volatile memory occupied by the AUTOGEN_PRAM_1 file and the user files:

AUTOGEN_PRAM_1 User Files

20 blocks 2 blocks

1024 (20 + 2) = 22528 bytes

Downloading User Files

The signal generator expects bit and binary file type data to be downloaded as block data (binary
data in bytes). The IEEE standard 488.2-1992 section 7.7.6 defines block data.

This section contains two examples to explain how to format the SCPI command for downloading
user file data. The examples use the binary user file SCPI command, however the concept is the same
for the bit file SCPI command:

¢ Command Format
¢ “Command Format in a Program Routine” on page 313

Command Format

This example conceptually describes how to format a data download command (#ABC represents the
block data):

: MEM DATA <"fil e_nane" >, #ABC

<"file_name"> the data file path and name

indicates the start of the block data
A the number of decimal digits present in B
B a decimal number specifying the number of data bytes to follow in C

312 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

C the file data in bytes

. MEM DATA ‘l‘ bi n:lrry_fi I e”l, #|3|240|12°/c8! 4807#8g* YO@T. . . |

file location file_name A B C

bi n: the location of the file within the signal generator file system

ny_file the data file name as it will appear in the signal generator’s memory
catalog

indicates the start of the block data

3 B has three decimal digits

240 240 bytes (1,920 bits) of data to follow in C

12%8! 4807#89* YO@ ... the ASCII representation of some of the block data (binary data)
downloaded to the signal generator, however not all ASCII values are
printable

In actual use, the block data is not part of the command line as shown above, but instead resides in
a binary file on the PC/UNIX. When the program executes the SCPI command, the command line
notifies the signal generator that it is going to receive block data of the stated size and to place the
file in the signal generator file directory with the indicated name. Immediately following the
command execution, the program downloads the binary file to the signal generator. This is shown in
the following section, “Command Format in a Program Routine”

Some commands are file location specific and do not require the file location as part of the file
name. An example of this is the bit file SCPI command shown in “Command for Bit File Downloads”
on page 315.

Command Format in a Program Routine

This section demonstrates the use of the download SCPI command within the confines of a C++
program routine. The following code sends the SCPI command and downloads user file data to the
signal generator’s Binary memory catalog (directory).

Line Code—Download User File Data
1 int bytesToSend;
2 byt esToSend = nunsanpl es;
3 char s[20];
4 char cnd[200] ;
5 sprintf(s, "%l", bytesToSend);
6 sprintf(cnd, ":MEM DATA\"BIN FI LEL\", #%%l", strlen(s), bytesToSend);
7 iwite(id, cmd, strlen(cnd), 0, 0);
8 iwite(id, databuffer, bytesToSend, 0, 0);
9 iwite(id, "\n", 1, 1, 0);

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 313

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Line Code Description—Download User File Data
1 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.
2 Calculate the total number of bytes, and store the value in the integer variable defined in line 1.
3 Create a string large enough to hold the bytesToSend value as characters. In this code, string s
is set to 20 bytes (20 characters—one character equals one byte)
4 Create a string and set its length (¢md[200]) to hold the SCPI command syntax and
parameters. In this code, we define the string length as 200 bytes (200 characters).
5 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = "2000”.
sprintf() is a standard function in C++, which writes string data to a string variable.
6 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares
the signal generator to accept the data.
* strlen() is a standard function in C++, which returns length of a string.
¢ If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA "BIN:FILE1\” #42000.
7 Send the SCPI command stored in the string cmd to the signal generator contained in the

variable id.

¢ qwrite() is a SICL function in Agilent IO library, which writes the data (block data) specified
in the string cmd to the signal generator.

¢ The third argument of ‘write(), strlen(cmd), informs the signal generator of the number of
bytes in the command string. The signal generator parses the string to determine the
number of data bytes it expects to receive.

* The fourth argument of iwrite(), 0, means there is no END of file indicator for the string.
This lets the session remain open, so the program can download the user file data.

314

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Line Code Description—Download User File Data
8 Send the user file data stored in the array (databuffer) to the signal generator.

e jwrite() sends the data specified in databuffer to the signal generator (session identifier
specified in id).

¢ The third argument of twrite(), bytesToSend, contains the length of the databuffer in bytes.
In this example, it is 2000.

¢ The fourth argument of ‘write(), 0, means there is no END of file indicator in the data.
In many programming languages, there are two methods to send SCPI commands and data:
— Method 1 where the program stops the data download when it encounters the first zero

(END indicator) in the data.
— Method 2 where the program sends a fixed number of bytes and ignores any zeros in
the data. This is the method used in our program.
For your programming language, you must find and use the equivalent of method two.
Otherwise you may only achieve a partial download of the user file data.
9 Send the terminating carriage (\n) as the last byte of the waveform data.

e qwrite() writes the data “\n” to the signal generator (session identifier specified in id).

* The third argument of ‘write(), 1, sends one byte to the signal generator.

* The fourth argument of ‘write(), 1, is the END of file indicator, which the program uses to
terminate the data download.

To verify the user file data download, see “Command for Bit File Downloads” on page 315 and

“Commands for Binary File Downloads” on page 316.

Command for Bit File Downloads

Because the signal generator adds a 10-byte file header during a bit file download, you must use the
SCPI command shown in Table 6-6. If you FTP or copy the file for the initial download, the signal
generator does not add the 10-byte file header, and it does recognize the data in the file (no data in
the transmitted signal).

Bit files enable you to control how many bits in the file the signal generator modulates onto the
signal. Even with this file type, the signal generator requires that all data be contained within bytes.
For more information on bit files, see “Bit File Type Data” on page 304.

Table 6-6 Bit File Type SCPI Commands

Type

Command Syntax

Command

:MEM DATA'BIT <"fil e_nane">, <bit_count >, <bl ock_dat a>

This downloads the file to the signal generator.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 315

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Table 6-6 Bit File Type SCPI Commands

Type Command Syntax

Query : MEM DATA: BI T? <"fil e_name">

Within the context of a program this query extracts the user file data. Executing the query
in a command window causes it to return the following information:
<bi t _count >, <bl ock_dat a>.

Query : MEM CAT: Bl T?

This lists all of the files in the bit file directory and shows the remaining non-volatile
memory:

<bytes used by bit files> <available non-volatile nenory>, <"fil e_nanes">

Command Syntax Example
The following command downloads a file that contains 17 bytes:
:MEM DATA BI T "new file", 131, #21702%5! 4&07#8g* YO&@
Since this command is file specific (Bl T), there is no need to add the file path to the file name.

After execution of this command, the signal generator creates a file in the bit directory (memory
catalog) named “new_file” that contains 27 bytes. Remember that the signal generator adds a
10-byte file header to a bit file. When the signal generator uses this file, it will recognize only 131
of the 136 bits (17 bytes) contained in the file.

For information on downloading block data, see “Downloading User Files” on page 312.

Commands for Binary File Downloads

To download a user file as a binary file type means that the signal generator, when the file is
selected for use, sees all of the data contained within the file. For more information on binary files,
see “Binary File Type Data” on page 307. There are two ways to download the file: to be able to
extract the file or not. Each method uses a different SCPI command, which is shown in Table 6-7.

Table 6-7 Binary File Type Commands

Command Command Syntax

Type

For SCPI : MEMory: DATA: UNPRot ect ed "bi n: fil e_nane", <dat abl ock>
Extraction

This downloads the file to the signal generator. You can extract the file within the
context of a program.

FrP2 | put <file_nane> /user/bin/file_name

No : MEM DATA "bin: fil e_nane", <bl ock data>

tracti
extraction This downloads the file to the signal generator. You cannot extract the file.

316 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Table 6-7 Binary File Type Commands

Command Command Syntax
Type
Query : MEM DATA? "bin:file_nane"

This returns information on the named file: <bit_count >, <bl ock_dat a>.
Within the context of a program, this query extracts the user file, provided it was
download with the proper command.

Query . MEM CAT: Bl N?

This lists all of the files in the bit file directory and shows the remaining
non- volatile memory:

<bytes used by bit files> <available non-volatile nmenory>, <"fil e_names">

a. See “FTP Procedures” on page 319.

File Name Syntax
There are three ways to format the file name, which must also include the file path:
e« "BINfile_name"
e "file_nanme@Bl N'
e "/user/BINfile_name"
Command Syntax Example
The following command downloads a file that contains 34 bytes:
: MEM DATA "BI N new file", #2347 %! 4&07#8g* YO@. ?: *Ru[+@3#_", >l

After execution of this command, the signal generator creates a file in the Binary (Bin) directory
(memory catalog) named “new_file” that contains 34 bytes.

For information on downloading block data, see “Downloading User Files” on page 312.

Selecting a Downloaded User File as the Data Source

This section describes how to format SCPI commands for selecting a user file using commands from
the GSM and Custom modulation formats. While the commands shown come from only two formats,
the concept remains the same when making the data selection for any of the other real-time
modulation formats that accept user data. To find the data selection commands for both framed and
unframed data for the different modulation formats, see the signal generator’s SCPI Command
Reference.

1. For TDMA formats, select either framed or unframed data:
:RAD 0: GSM BURSt ON CFF| 1] 0
ON(1) = framed CFF(0) = unframed

2. Select the user file:

Unframed Data

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 317

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

3.
4.

: RADI 0: QUSTom DATA "BI T: fil e_nane"
: RADI 0: QUSTom DATA "BIN: fil e_nane"
Framed Data
: RADI 0: GSM SLOTO0| 1] 2| 3| 4] 5] 6] 7: NORMVal : ENCRyption "BI T: fil e_nane"
: RADI 0: GSM SLOTO0| 1] 2| 3| 4] 5] 6] 7: NORMVal : ENCRyption "BI N fil e_nane"
Configure the remaining signal parameters.

Turn the modulation format on:
: RAD o0: QUSTom STATe On

Modulating and Activating the Carrier

Use the following commands to modulate the carrier and turn on the RF output. For a complete
listing of SPCI commands, refer to the SCPI Command Reference.

: FREQuency: Fl Xed 2. 5GH

: POMr: LEVel -10.0DBM

: QUTPut : MCDul at i on: STATe ON
: QUTPut : STATe ON

Modifying User File Data

There are two ways to modify a file after downloading it to the signal generator:

Use the signal generator’s bit file editor. This works for both bit and binary files, but it converts
a binary file to a bit file and adds a 10-byte file header. For more information on using the bit
file editor, see the signal generator’s User’s Guide. You can also access the bit editor remotely
using the signal generator’s web server. For web server information, see the signal generator’s
Programming Guide.

Use a hex editor program on your PC or UNIX workstation, as described below.

Modifying a Binary File with a Hex Editor

1. FTP the file to your PC/UNIX.
For information on using FTP, see FTP Procedures. Ensure that you use binary file transfers
during FTP operations.
Modify the file using a hex editor program.

3. FTP the file to the signal generator’s BIN memory catalog (directory).

318 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Modifying a Bit File with a Hex Editor
1. FTP the file to your PC/UNIX.

For information on using FTP, see FTP Procedures. Ensure that you use binary file transfers
during FTP operations.

2. Modify the file using a hex editor program.

If you need to decrease or increase the number of bits of interest, change the file header hex
value.

80 Byte File From Signal Generator
02 80 hex = 640 bits designated as bits of interest

00000000 = ES 01|00 oo oo 0o o0 oo 02 80[Sa 26 78 Sb 2b 37
00000010: 47 37 20 23 2f 34 61 63 39 3f 25 2e 69 52 33 22
00000020: 40 2Ze 74 59 75 76 3a 3e 36 26 24 46 47 Ga 3c 7b
00000030: S5c 4b 6o 2d 2b 20 Ze 68 47 3f 22 60 7e 75 Za 39
00000040: 6b Sf 21 60 7e 2o 3a 37 Se Gc Ge Ze 2o 3f Ge 74
00000050,

Modified File (80 Bytes to 88 Bytes)
02 bd hex = 701 bits designated as bits of interest

ooooo0oo. 58 DlIDD 00 00 00 00 00 02 deSu 26 78 5b 2b 37

DO000010: 47 37 20 23 2F 34 61 63 39 3F 25 2Ze 69 52 33 22
DO00O020: 40 2= 74 59 75 76 3a 3e 36 26 24 46 47 6a 3c 7b
D0O00030: Se 4b 6 2d 2b 20 2e 68 47 3f 22 60 7= 75 2a 39
D0000040: 6B S 21 60 7e 2c 3a 37 Se G 6e 2e 2o 3f Ge 74
00000050 |23 26 3c 6b Za 75 3f 5e|_

L 1

Added bytes

3. FTP the file to the signal generator’s BIT memory catalog (directory).

FTP Procedures

There are three ways to FTP a file:

e use Microsoft’s ® Internet Explorer FTP feature
¢ use the signal generator’s internal web server (ESG firmware > C.03.76)
¢ use the PC or UNIX command window

Using Microsoft’s Internet Explorer
1. Enter the signal generator’s hostname or IP address as part of the FTP URL.

ftp://<host name> or <IP address>
2. Press Enter on the keyboard or Go from the Internet Explorer window.
The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Microsoft is a U.S registered trademark of Microsoft Corporation.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 319

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Using the Signal Generator’s Internal Web Server
1. Enter the signal generator’s hostname or IP address in the URL.

hitp://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of the window.
The signal generator files appear in the web browser’s window.

3. Drag and drop files between the PC and the browser’s window

For more information on the web server feature, see the Programming Guide.

Using the Command Window (PC or UNIX)
1. From the PC command prompt or UNIX command line, change to the proper directory:

* When downloading from the signal generator, the directory in which to place the file.
¢ When downloading to the signal generator, the directory that contains the file.

2. From the PC command prompt or UNIX command line, type ftp <i nstrument name>.
Where i nstrunment name is the signal generator’s hostname or IP address.
At the User: prompt, press Enter (no entry is required).
At the Passwor d: prompt, press Enter (no entry is required).
At the ftp prompt, type the desired command:

To Get a File From the Signal Generator

get /user/<directory>/ <file_nanel> <file_name>
To Place a File in the Signal Generator

put <file_name> /user/<directory>/<file_nanel>

e <file_nanel> is the name of the file as it appears in the signal generator’s directory.
o <file_nane> is the name of the file as it appears in the PC/UNIX current directory.
e <directory> is the signal generator’'s Bl T or Bl N directory.

At the ftp prompt, type: bye
At the command prompt, type: exi t

Understanding Framed Transmission For Real-Time TDMA

Specifying a user file as the data source for a framed transmission provides you with an easy method
to multiplex real data into internally generated TDMA framing. The user file fills the data fields of
the active timeslot in the first frame, and continue to fill the same timeslot of successive frames as
long as there is more data in the file with enough bits to fill the data field. This functionality enables
a communications system designer to download and modulate proprietary data sequences, specific PN
sequences, or simulate multiframe transmission such as those specified by some mobile
communications protocols. As the example in the following figure shows, a GSM multiframe
transmission requires 26 frames for speech.

320 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Figure 6-1 GSM Multiframe Transmission

SuperFrame = 51 MultiFrames = MM | | | | (Wﬂ:ﬂm
1,657,500 bits =6.12 s
/7 <!\
Speech MultiFrame (TCH) =]
26 Frames = 32,500 bits = 120 ms F

Frame = 8 Timeslots =
TS7
1250 bits = 4.615 ms TS0 |TS1| TS2 | TS3 | Ts4 | TS5 -

Normal GSM Timeslot = 3 57 1 26 1 57 3| 805
156.25 bits = 576.92 us

Steal Data Tail Guard
Bit Field#2 Bits Period

Tail Data Steal
Bits Field #1 Bit

Midamble

When you select a user file as the data source for a framed transmission, the signal generator’s
firmware loads PRAM with the framing protocol of the active TDMA format. This creates a file named
AUTOGEN_PRAM_1 in addition to a copy of the user file. For all addresses corresponding to active
(on) timeslots, the signal generator sets the burst bit to 1 and fills the data fields with the user file
data. Other bits are set according to the configuration selected. For inactive (off) timeslots, the signal
generator sets the burst control bit to 0, with the data being unspecified.

In the last byte that contains the last user file data bit, the signal generator sets the Pattern Reset bit
to 1. This causes the user file data pattern to repeat in the next frame.

NOTE The data in PRAM is static. Firmware writes to PRAM once for the configuration selected
and the hardware reads this data repeatedly. Firmware overwrites the volatile PRAM
memory to reflect the desired configuration only when the data source or TDMA format
changes.

For example, transmitting a 228-bit user file for timeslot #1 (TS1) in a normal GSM transmission
creates two frames. Per the standard, a GSM normal channel is 156.25 bits long, with two 57-bit data
fields (114 user data bits total per timeslot), and 42 bits for control or signalling purposes.The user
file completely fills timeslot #1 for two consecutive frames, and then repeats. The seven remaining
timeslots in the GSM frame are off, as shown in Figure 6-2

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 321

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Figure 6-2 Mapping User File Data to a Single Timeslot

228 bit User File

| 114 bits

| 114bits |

8 v
TSO TS1 TS2 TS3 TS4 TS5 TS6 TS7 TSO TS1 TS2 TS3 TS4 TS5 TS6 TS7 |TSO TS1 TS2
Frame 1 Frame 2 Frame 1)
Time
—>
NOTE Compliant with the GSM standard, which specifies 156.25-bit timeslots, the signal generator

uses 156-bit timeslots and adds an extra guard bit to every fourth timeslot.

For this protocol configuration, the signal generator’s firmware loads PRAM with the bits defined in
the following table. (These bits are part of the 32-bit word per frame bit.) The Pattern Reset bit, bit
7, is 0 for frame one and 1 for the last byte of frame two.

Frame Timeslot PRAM Word Data Bits Burst Bits Pattern Reset Bit
Offset
1 0 0 -155 0/1 (don’t care) 0 (off) 0 (off)
1 1 (on) 156 - 311 set by GSM standard (42 bits) & first 1 (on) 0
114 bits of user file
1 2 312 - 467 0/1 (don’t care) 0 0
1 3 468 - 624 0/1 (don’t care) 0 0
1 4 625 - 780 0/1 (don’t care) 0 0
1 5 781 - 936 0/1 (don’t care) 0 0
1 6 937 - 1092 0/1 (don’t care) 0 0
1 7 1093 - 1249 0/1 (don’t care) 0 0
2 0 1250 - 1405 0/1 (don’t care) 0 0
2 1 (on) 1406 - 1561 set by GSM standard (42 bits) & 1 (on) 0
remaining bits of user file
2 2 through 6 1562 - 2342 0/1 (don’t care) 0 0 (off)
2 7 2343 - 2499 0/1 (don’t care) 0 1 (1 in offset
2499 only)
322 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Event 1 output is set to 0 or 1 depending on the sync out selection, which enables the EVENT 1
output at either the beginning of the frame, beginning of a specific timeslot, or at all timeslots (SCPI
command, : RAD 0: GSM SOUT FRAME| SLOT| ALL).

Because timeslots are configured and enabled within the signal generator, a user file can be
individually assigned to one or more timeslots. A timeslot cannot have more than one data source
(PN sequence or user file) specified for it. The amount of user file data that can be mapped into
hardware memory depends on both the amount of PRAM available on the baseband generator, and
the number and size of each frame. (See “Determining Memory Usage for Custom and TDMA User
File Data” on page 309.)

PRAM adds 31 bits to each bit in a frame, which forms 32-bit words.
The following shows how to calculate the amount of PRAM storage space required for a GSM
superframe:

Bits per superframe = normal GSM timeslot % timeslot per frame X speech multiframe(TCH) X

superframe

size of normal GSM timeslot = 156.25 timeslots per frame = 8 timeslots.
bits

speech multiframe(TCH) = 26 frames superframe = 51 speech multiframes

1. Calculate the number of bits in the superframe:
156.25 x 8 x 26 x 51 = 1,657,500 bits
2. Calculate the size of the PRAM file:
1,657,500 bits x 4 bytes (32-bit words) = 6,630,000 bytes
3. Calculate how much memory the PRAM file will occupy
6,630,000 bytes / 1,024 bytes per PRAM block = 6,474.6 memory blocks
4. Round the quotient up to the next integer value

6,475 blocks x 1,024 bytes per block = 6,630,400 bytes

NOTE For the total PRAM memory usage, be sure to add the number of PRAM blocks that the user
file occupies to the PRAM file size. For more information, see “Calculating Volatile Memory
(PRAM) Usage for Framed Data” on page 310.

Real-Time Custom High Data Rates

Custom has two modes for processing data, serial and parallel. When the data bit-rate exceeds

50 Mbps, the signal generator processes data in parallel mode, which means processing the data
symbol by symbol versus bit by bit (serial). This capability exists in only the Custom format when
using a

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 323

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

continuous data stream. This means that it does not apply to a downloaded PRAM file type (covered
later in this chapter).

In parallel mode, for a 256QAM modulation scheme, Custom has the capability to reach a data rate
of up to 400 Mbps. The FIR filter width is what determines the data rate. The following table shows
the maximum data rate for each modulation type. Because the signal generator’s maximum symbol
rate is 50 Msps, a modulation scheme that has only 1 bit per symbol is always processed in serial
mode.

Modulation Type Bit Rate Range for Internal Data (bit rate = symbol rate x bits per symbol)

16 Symbol Wide FIR
Filter

32 Symbol Wide FIR
Filter

64 Symbol Wide FIR
Filter

BPSK, 2FSK, MSK

1bps-50Mbps

1bps-25 Mbps

1bps-12.5Mbps

C4FM, OQPSK,
4FSK

IS95 OQPSK,
QPSK

P4DQPSK,
1S95 QPSK

GRAYQPSK,
4QAM

2bps-100Mbps

2bps-50Mbps

2bps-25Mbps

DSPSK, EDGE,
8FSK, 8PSK

3bps-150Mbps

3bps-75Mbps

3bps-37.56Mbps

16FSK, 16PSK,

4bps-200Mbps

4bps-100Mbps

4bps-50Mbps

16QAM

Q32AM 5bps-250Mbps 5bps-125Mbps 5bps-62.5Mbps
64QAM 6bps-300Mbps 6bps-150Mbps 6bps-75Mbps
128QAM 7bps—-350Mbps Tbps-175Mbps 7bps-87.5Mbps
256QAM 8bps-400Mbps 8bps-200Mbps 8bps-100Mbps

The only external effect of the parallel mode is in the EVENT 1 output signal. In serial and parallel
mode, the signal generator outputs a narrow pulse at the EVENT 1 connector. But in parallel mode,
the output pulse width increases by a factor of bits-per-symbol wide, as shown in the following
figure.

324 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

32QAM (5 bits per symbol)
bit rate = bits per symbol x symbol rate

20 ns 10.000001 Msps
! !

NOTE: The pulse widths values are only for example purposes. The actual width may vary from the above values.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 325

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

NOTE This section applies only to the E4438C with Option 001/601 or 002/602, and the E8267D
with Option 601 or 602.

Although it is not used, each PRAM file has a file header that uses 512 bytes (Agilent MXGQG),
or 256 bytes (ESG/PSG) of memory that is consumed in the first data block of 1024 bytes of
memory for each PRAM file.

PRAM data downloads apply to only real-time Custom and TDMA modulation formats. In the TDMA
formats, PRAM files are available only while using the unframed data selection. The following table
shows which signal generator models support these formats.

E4438C ESG E2867D PSG

Custom? TDMAP Custom?

a. For ESG, requires Option 001/601 or 002/602, for PSG requires Option 601 or 602.
b. Real-time TDMA modulation formats require Option 402 and include EDGE, GSM, NADC, PDC,
PHS, DECT, and TETRA.

PRAM files differ from bit and binary user files.

Bit and binary user files (see page 303) download to non-volatile memory and the signal generator
loads the user file data into PRAM (volatile/waveform memory) for use. The signal generator adds the
required control bits when it generates the signal.

A PRAM file downloads directly into PRAM, and it includes seven of the required control bits for
each data (payload) bit. The signal generator adds the remaining control bits when it generates the
signal. You download the file using either a list or block data format. Programs such as MATLAB or
MathCad can generate the data. The control bits included in the PRAM file download, control the
following signal functions:

* bursting
* timing signal at the EVENT 1 rear panel connector
* data pattern reset

This type of signal control enables you to design experimental or proprietary framing schemes.

After selecting the PRAM file, the signal generator builds the modulation scheme by reading data
stored in PRAM, and constructing framing protocols according to the PRAM file data and the
modulation format. You can manipulate PRAM data by changing the standard protocols for a
modulation format such as the symbol rate, modulation type, and filter either through the front panel
interface or with SCPI commands.

This section contains information to help you transfer user-generated PRAM data from a system
controller to the signal generator’s PRAM. It explains how to download data directly into PRAM and
modulate the carrier signal with the data.

326 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Understanding PRAM Files

The term PRAM file comes from earlier Agilent products, the E443xB ESGs. PRAM is another term
for waveform memory (WFM1), which is also known as volatile memory. This means that PRAM files
and waveform files occupy the same memory location. The signal generator’s volatile memory
(waveform memory) storage path is / user/ BBGL/ wavef or m For more information on memory, see
“Signal Generator Memory” on page 297.

The following figure shows a PRAM byte and illustrates the difference between it and a bit/binary
user file byte. Notice the control bits in the PRAM byte.

MSB LSB MSB LSB
PRAM File DataByte: 1 1 01 01 01, User File DataByte: 1 0 0 1 1 10 1
\ N _

Control bits Payload bit payload Bits

Only three of the seven control bits elicit a response from the signal generator. The other four bits
are reserved. Table 6-8 describes the bits for a PRAM byte.

Table 6-8 PRAM Data Byte

Bit Function Value Comments
0 Data 0/1 This is the data (payload) bit. It is “unspecified” when burst (bit 2) is set to 0.
1 Reserved 0 Always 0
2 Burst 0/1 1 = RF on
0 = RF off

For non-bursted, non-TDMA systems, to have a continuous signal, set this bit to 1 for all
bytes. For framed data, set this bit to 1 for on timeslots and 0 for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0

6 EVENT1 0/1 To have the signal generator output a single pulse at the EVENT 1 connector, set this bit
Output to 1. Use this output for functions such as a triggering external hardware to indicate when

the data pattern begins and restarts, or creating a data-synchronous pulse train by
toggling this bit in alternate bytes.

7 Pattern Reset 0/1 0 = continue to next sequential memory address.

1 = end of memory and restart memory playback.

This bit is set to 0 for all bytes except the last byte of PRAM. To restart the pattern, set
the last byte of PRAM to 1.

As seen in Table 6-8, only four bits, shown in the following list, can change state:

* Dbit O—data

¢ bit 2—bursting

¢ bit 6-EVENT 1 rear panel output
e bit 7—pattern reset

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 327

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Because a PRAM byte has only four bits that can change states, there are only 15 possible byte
patterns as shown in Table 6-9. The table also shows the decimal value for each pattern, which is
needed for downloading data using the list format shown on page 331.

328 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Table 6-9 PRAM Byte Patterns and Bit Positions

~ ~ ~ ~
- o = e)
2 1 1 1 1
2 ‘5 2 2| = =
g1 S| g1 g8 g
Bit Function I~ Bit
T T T ' =
£ E QE) QE) E - E Pattern
S| 8| 8| g g B §| g| Decima
ElB| 2| =|&| & &| &| Value
Bit Position 716 5 | 4 3 (2|1 0 -
Bit Pattern 1 1 0 1 o|1]|0 1 213
1 1 0 1 oO|1|0]O0 212
1 1 0 1 0|0/ O 1 209
1 1 0 1 0|0 0] O 208
1 0 0 1 o|1]|0 1 149
1 0 0 1 0|0/ O 1 145
1 0 0 1 0|0 0] O 144
0 1 0 1 o|1]|0 1 85
0 1 0 1 o|1|0]O0 84
0 1 0 1 o]0/ O 1 81
0 1 0 1 0|0 0] O 80
0 0 0 1 o|1]|0 1 21
0 0 0 1 oO|1|0]O0 20
0 0 0 1 0|0/ O 1 17
0 0 0 1 0O|0| 0] O 16

Viewing the PRAM Waveform

After the waveform data is written to PRAM, the data pattern can be viewed using an oscilloscope.
There is approximately a 12-symbol delay between a state change in the burst bit and the
corresponding effect at the RF out. This delay varies with symbol rate and filter settings, and
requires compensation to advance the burst bit in the downloaded PRAM file.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 329

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

PRAM File Size

Because volatile memory resides on the baseband generator (BBG), the maximum PRAM file size
depends on the installed baseband generator option, as shown in Table 6-10.

Table 6-10 Maximum PRAM User File Size (Payload Bits Only)

Baseband Generator Option
Modulation
Format
001/601 002 602
Custom a a a
TDMA 8 Mbits 32 Mbits 64 Mbits

a. File size with no other files residing in volatile memory.

The maximum PRAM user file size in the table above refers to the maximum number of payload bits.
After downloading, the signal generator translates each downloaded payload bit into a 32-bit word:

¢ 1 downloaded payload bit
e 7 downloaded control bits as shown in Table 6-8 on page 327
e 24 bits added by the signal generator

The following table shows the maximum file size after the signal generator has translated the
maximum number of payload bits into 32-bit words.

Table 6-11 Maximum File Size After Downloading

Baseband Generator Option
Modulation
Format
001/601 002 602
Custom a a a
TDMA 32 MBytes 128 MBytes 256 MBytes'

a. File size with no other files residing in volatile memory.

To properly size a PRAM file, you must determine the file size after the 32-bit translation process.
The signal generator measures a PRAM file size in units of bytes; each 32-bit word equals 4 bytes.

Determining the File Size

The following example shows how to calculate a downloaded file size using a PRAM file that contains
89 bytes (payload bits plus 7 control bits per payload bit):

89 bytes + [(89 x 24 bits) / 8] = 3566 bytes

Because the file downloads one fourth of the translated 32-bit word, another method to calculate the
file size is to multiply the downloaded file size by four:

89 bytes X 4 = 356 bytes
See also “Signal Generator Memory” on page 297 and “Checking Available Memory” on page 301.

330 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Minimum File Size

A PRAM file requires a minimum of 60 bytes to create a signal. If the downloaded file contains less
than 60 bytes, the signal generator replicates the file until the file size meets the 60 byte minimum.
This replication process occurs after you select the file and turn the modulation format on. The
following example shows this process using a downloaded 14-byte file:

* During the file download, the 14 bytes are translated into 56 bytes (fourteen 32-bit words).
14 bytes X 4 = 56 bytes

FREQUENCY

4.000 000 000 00 s

AMPLITUDE

136.00 den
’7 @ File size increases

| |~ by a factor of 4

Catalog of UFM1 Files 1656 butes used 13L033L0S but ree
File Hame Tupe Size Nodified

1 PRAME_LIST_ILBYTES LFHL (56)= -1
2 RAMP_TEST_HFM __ LFM1 T - i =i

e After selecting and turning the format on, the signal generator replicates the file contents to
create the 60 byte minimum file size

60 bytes / 14 bytes = 4.29 file replications

The signal generator rounds this real value up to the next highest integer. In this example, the
signal generator replicates the fourteen 32-bit words (56 bytes) by a factor of 5, which makes the
final file size 280 bytes. This equates to a 70 byte file.

14 bytes X 5 = 70 bytes

70 + [(70 x 24) / 8] = 280 bytes
Or

56 bytes x 5 = 280 bytes

FREQUENCY AMPLITUOE

1.00000000000 &z | -10.00 den

cusTon ’7 @
Enu| 1/0| File size increases
| | by a factor of 5

Catalog of UFM1 Files 1830 butes used 134033402 butes
File Hame Tupe Size dified

1 PRAMS_LIST_{LEYTES WFHL e
2 RAMP_TEST_HFM __ WFL o /i ——i—-

SCPI Command for a List Format Download

Using the list format, enter the data in the command line using comma- separated decimal values.
This file type takes longer to download because the signal generator must parse the data. When
creating the data, remember that the signal generator requires a minimum of 60 bytes. For more
information on file size limits, see “PRAM File Size” on page 330.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 331

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Command Syntax

: MEMory: DATA: PRAM FI LE: LI ST <"fil e_nanme">, <ui nt 8>[, <ui nt 8>, <. .. >]

uint8 The decimal equivalent of an unsigned 8-bit integer value. For a list of usable
decimal values and their meaning with respect to the generated signal, see Table
6-9 on page 329.

Command Syntax Example

The following example, when executed, creates a new file in volatile (waveform) memory with the
following attributes:

e creates a file named new_file

¢ outputs a single pulse at the EVENT 1 connector

* bursts the data pattern 1100 seven times over 28 bytes
¢ transmits 32 nonbursted bytes

* resets the data pattern so it starts again

: MEMory: DATA: PRAM FI LE: LI ST <"new fil e">, 85, 21, 20, 20, 21, 21, 20, 20, 21, 21, 20, 20, 21, 21,
20, 20, 21, 21, 20, 20, 21, 21, 20, 20, 21, 21, 20, 20, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 144

The following list defines the meaning of the different bytes seen in the command line:
85 Send a pulse to the EVENT 1 output, and burst the signal with a data bit of 1.
21 Burst the signal with a data bit of 1.
20 Burst the signal with a data bit of 0.
16 Do not burst the signal (RF output off), and set the data bit to O.

144 Reset the data pattern, do not burst the signal (RF output off), and set the data bit to 0.

SCPI Command for a Block Data Download

The IEEE standard 488.2-1992 section 7.7.6 defines block data. The signal generator is able to
download block data significantly faster than list formatted data (see page 331), because it does not
have to parse the data. When creating the data, remember that the signal generator requires a
minimum of 60 bytes. For more information on file size limits, see “PRAM File Size” on page 330.

Command Syntax
: MEMor y: DATA: PRAM FI LE: BLOXk <"fi | e_nane" >, <bl ockdat a>
The following sections explain how to format the SCPI command for downloading block data:

¢ Command Syntax Example

¢ Command Syntax in a Program Routine

Command Syntax Example

This example conceptually describes how to format a block data download command (#ABC represents
the block data):

332 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

: MEMory: DATA: PRAM FI LE: BLOCK <"fil e_nane" >, #ABC

<"file_nane"> the file name as it will appear in the signal generator

indicates the start of the block data

the number of decimal digits present in B

a decimal number specifying the number of data bytes to follow in C
the PRAM file data in bytes

: MEMor y: DATA: PRAM FI LE: BLOCk [y _fi | e”l, #|?1240|12%3! 4807#89* YO@ . . .

O o > #

file_name A B C

ny_file the PRAM file name as it will appear in the signal generator’s WFM1
memory catalog

indicates the start of the block data

3 B has three decimal digits

240 240 bytes of data to follow in C

12%8! 4&07#89* YO@ . .. the ASCII representation of some of the block data (binary data)
downloaded to the signal generator, however not all ASCII values are
printable

In actual use, the block data is not part of the command line as shown above, but instead resides in
a binary file on the PC/UNIX. When the program executes the SCPI command, the command line
notifies the signal generator that it is going to receive block data of the stated size, and to place the
file in the signal generator file directory with the indicated name. Immediately following the
command execution, the program downloads the binary file to the signal generator. This is shown in
the following section, “Command Syntax in a Program Routine”

Command Syntax in a Program Routine

This section demonstrates the use of the download SPCI command within the confines of a C++
program routine. The following code sends the SCPI command and downloads a 240 byte PRAM file
to the signal generator’s WFM1 (waveform) memory catalog. This program assumes that there is a
char array, databuffer, that contains the 240 bytes of PRAM data and that the variable numbytes
stores the length of the array.

Line Code—Download PRAM File Data
1 int bytesToSend;
2 byt esToSend = nunbytes;
3 char s[4];
4 char cnd[200] ;
5 sprintf(s, "%l", bytesToSend);
6 sprintf(crmd, ": MEM DATA: PRAM FI LE: BLOXX \"FI LE1\ ", #%l%l", strlen(s), bytesToSend);
7 iwite(id, cnd, strlen(cnd), 0, 0);
8 iwite(id, databuffer, bytesToSend, 0, 0);
9 iwite(id, "\n", 1, 1, 0);

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 333

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Line Code Description—Download PRAM File Data
1 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.
2 Store the total number of PRAM bytes in the integer variable defined in line 1. numbytes

contains the length of the databuffer array referenced in line 8.

3 Create a string large enough to hold the bytesToSend value as characters plus a null character
value. In this code, string s is set to 4 bytes (3 characters for the bytesToSend value and one
null character—one character equals one byte).

4 Create a string and set its length (¢md[200]) to hold the SCPI command syntax and
parameters. In this code, we define the string length as 200 bytes (200 characters).

5 Store the value of bytesToSend in string s. For this example, bytesToSend = 240; s = "240”

6 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares

the signal generator to accept the data.
¢ sprintf() is a standard function in C++, which writes string data to a string variable.
¢ strlen() is a standard function in C++, which returns length of a string.

* bytesToSend = 240, then s = “240” plus the null character, strlen(s) = 4, so
cmd = :MEM:DATA:PRAM:FILE:BLOCk "FILE1\” #3240.

7 Send the SCPI command stored in the string cmd to the signal generator contained in the
variable id.

¢ Jwrite() is a SICL function in Agilent IO library, which writes the data (block data) specified
in the string cmd to the signal generator.

® The third argument of ‘write(), strlen(cmd), informs the signal generator of the number of
bytes in the command string. The signal generator parses the string to determine the
number of data bytes it expects to receive.

* The fourth argument of iwrite(), 0, means there is no END of file indicator for the string.
This lets the session remain open, so the program can download the PRAM file data.

334 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Line Code Description—Download PRAM File Data

8 Send the PRAM file data stored in the array, databuffer, to the signal generator.

* jwrite() sends the data specified in databuffer (PRAM data) to the signal generator (session
identifier specified in id).

* The third argument of iwrite(), bytesToSend, contains the length of the databuffer in bytes.
In this example, it is 240.

¢ The fourth argument of ‘write(), 0, means there is no END of file indicator in the data.
In many programming languages, there are two methods to send SCPI commands and data:

— Method 1 where the program stops the data download when it encounters the first zero
(END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros in
the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method two.
Otherwise you may only achieve a partial download of the user file data.

9 Send the terminating carriage (\n) as the last byte of the waveform data.
e qwrite() writes the data “\n” to the signal generator (session identifier specified in id).
* The third argument of ‘write(), 1, sends one byte to the signal generator.

* The fourth argument of ‘write(), 1, is the END of file indicator, which the program uses to
terminate the data download.

Selecting a Downloaded PRAM File as the Data Source

The following steps show the process for selecting a PRAM file using commands from the GSM
(TDMA) modulation format. While the commands shown come from only one format, the concept
remains the same when making the data selection for any of the other real-time modulation formats
that support PRAM data. To find the commands for Custom and the other TDMA formats, see the
signal generator’s SCPI Command Reference.

1. For real-time TDMA formats, select unframed data:
: RAD 0: GSM BURSt : STATe OFF

2. Select the data type:
: RAD 0: GSM DATA PRAM

3. Select the PRAM file:
: RAD 0: GSM DATA: PRAM <"fi | e_name" >

Because the command is file specific (PRAM), there is no need to include the file path with the
file name.

Configure the remaining signal parameters.

Turn the modulation format on:

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 335

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

: RAD 0: GSM STATe On

Modulating and Activating the Carrier

Use the following commands to modulate the carrier and turn on the RF output. For a complete
listing of SPCI commands, refer to the SCPI Command Reference.

: FREQuency: Fl Xed 1. 8GHZ

: POMr: LEVel -10.0DBM

: QUTPut : MCDul at i on: STATe ON
: QUTPut : STATe ON

Storing a PRAM File to Non-Volatile Memory and Restoring to Volatile Memory

After you download the file to volatile memory (waveform memory), you can then save it to
non-volatile memory. Remember that a PRAM file downloads to waveform memory. Conversely, when
you store a PRAM file to non-volatile memory, it uses the same directory as waveform files. When
storing or restoring a file, you must include the file path as part of the file_name variable.

Command Syntax

The first file_name variable is the current location of the file and its name; the second file_name
variable is the destination to store the file and its name.

There are three ways to format the file_name variable to include the file path:

Volatile Memory to Non- Volatile Memory

: MEMory: COPY "WFML: fi | e_nane", "NWWFM fi | e_nane"
:MEMory: COPY "fil e_name@¥M.", "“fil e_nane @WWFM
: MEMory: COPY "/ user/ bbgl/ wavefornifile_nane","/user/wavefornifil e_nane"

Non- Volatile Memory to Volatile Memory

: MEMory: COPY "NVWM fi | e_nane", "WML: fi |l e_nane"
:MEMory: COPY "fil e_name@WVWM', "fi | e_name @V¥ML"
: MEMory: OOPY "/user/wavefornifile_nane","/user/bbgl/ wavefornifil e_name"

Extracting a PRAM File

When you extract a PRAM file, you are extracting the translated 32-bit word-per-byte file. You cannot
extract just the downloaded data. Extracting a PRAM file is similar to extracting a waveform file in
that you use the same commands, and the PRAM file resides in either volatile memory (waveform
memory) or the waveform directory for non-volatile memory. After extraction, you can download the
file to the same signal generator or to another signal generator with the proper option configuration
that supports the downloaded file. There are two ways to download a file after extraction:

* with the ability to extract later
¢ with no extraction capability

336 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

CAUTION Ensure that you do not use the : MEMory: DATA: PRAM FI LE: BLOCK command to download
an extracted file. If you use this command, the signal generator will treat the file as a
new PRAM file and translate the LSB of each byte into a 32-bit word, corrupting the file
data.

Command Syntax

This section lists the commands for extracting PRAM files and downloading extracted PRAM files. To
download an extracted file, you must use block data. For information on block data, see “SCPI
Command for a Block Data Download” on page 332. In addition, there are three ways to format the
file_name variable, which must also include the file path, as shown in the following tables.

There are two commands for file extraction:

e« :MEM DATA? <"fil e_name">

e : MMEM DATA? <"fil ename">

The following table uses the first command to illustrate the command format, however the format is
the same if you use the second command.

Table 6-12 Extracting a PRAM File

Extraction Command Syntax Options
Method/Memory Type

SCPI/volatile memory : MEM DATA? "WFML: fi | e_nane"
: MEM DATA? "file_nane@W¥ML"
: MEM DATA? "/ user/bbgl/ wavefornifil e_name"

SCPI/non- volatile . MEM DATA? "NWWFM fi | e_name"
memory : MEM DATA? "fil e_nane@WWM

: MEM DATA? "/ user/waveforn fil e_name"
FTP/volatile memory® get /user/bbgl/waveforn fil e_nanme
FTP/non- volatile get /user/waveform fil e_name
memory?

a. See “FTP Procedures” on page 319.

Table 6-13 Downloading a File for Extraction

Download Method/ Command Syntax Options
Memory Type

SCPI/volatile memory . MEM DATA: UNPRot ect ed "WFML: fi | e_name", <bl ockdat a>
: MEM DATA: UNPRot ected "fil e_name@WFM.", <bl ockdat a>
- MEM DATA: UNPRot ect ed "/ user/ bbgl/ wavef ormi fil e_name", <bl ockdat a>

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 337

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Table 6-13 Downloading a File for Extraction

Download Method/ Command Syntax Options
Memory Type

SCPI/non- volatile : MEM DATA: UNPRot ect ed "NWWM fi | e_name", <bl ockdat a>
memory : MEM DATA: UNPRot ected "fi | e_name@WVWM', <bl ockdat a>
: MEM DATA: UNPRot ect ed "/ user/waveform fil e_name", <bl ockdat a>
FTP/volatile memory® put <file_name> /user/bbgl/ wavefornifile_name
FTP/non-volatile put <file_nane> /user/wavefornifile_nane
memory?

a. See “FTP Procedures” on page 319.

There are two commands that download a file for no extraction:

e« :MEM DATA <"fil e_name">, <bl ockdat a>
¢ :MMEM DATA <"fil enane" >, <bl ockdat a>

The following table uses the first command to illustrate the command format, however the format is
the same if you use the second command.

Table 6-14 Downloading a File for No Extraction

Download Method/ Command Syntax Options
Memory Type

SCPI/volatile memory : MEM DATA "WFML: fi |l e_nane", <bl ockdat a>
: MEM DATA "fil e_nane@W¥FM.", <bl ockdat a>
. MVEM DATA "user/ bbgl/ wavefornifil e_nane", <bl ockdat a>

SCPI/non-volatile memory | : MEM DATA "NWWFM fi | e_nane", <bl ockdat a>
: MEM DATA "fil e_nane@WWM', <bl ockdat a>
: MEM DATA /user/wavefornifil e_name", <bl ockdat a>

Modifying PRAM Files

The only way to change PRAM file data is to modify the original file on the PC/UNIX and download
it again. The signal generator does not support viewing and editing PRAM file contents. Because the
signal generator translates the data bit into a 32-bit word, the file contents are not recognizable, and
therefore not editable using a hex editor program, as shown in the following figure.

338 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

60 byte PRAM file pI'iOI' to downloading 00000000 . ES 15 15 15 15 14 15 14 15 14 14 15 15 15 14 14
00000010: 14 15 15 15 14 15 14 14 15 14 14 15 15 14 14 15

ooooo020: 15 14 14 14 14 14 15 15 14 14 15 15 14 15 15 14
0oo0o0030: 14 14 15 14 14 15 15 15 15 15 14 20

. . 00000000: 00 0L OL 40 00 0L 00 40 00 0l 00 40 00 0l 00 40
60 byte PRAM file after downloading |noo00010: 00 01 00 40 00 00 00 40 00 01 00 40 00 00 0O 40
ooooozo: 00 01 OO0 40 00 00 OO0 40 00 00 OO0 40 00 01 OO0 40
00000030: 00 01 00 40 00 01 00 40 00 00 OO0 40 00 00 OO0 40
D0oDOO40: 0O 0D 00 40 0O 01 00 40 00 01 OO0 40 00 01 00 40
0000O0S0: 0O 00 00 40 00 01 00 40 00 00 OO0 40 00 00 OO0 40
booooOs0: 00 01 OO0 40 00 00 OO0 40 00 00 OO0 40 00 01 OO0 40
00000070: 0O 01 00 40 00 00 00 40 00 00 00 40 00 01 OO0 40
000DOOBO: 0O 01 00 40 0O 00 00 40 00 00 OO0 40 00 00 OO0 40
0000O0S0: 0O 00 OO0 40 0O 00 00 40 00 01 OO0 40 00 01 00 40
000O00A0: 00 00 OO0 40 00 00 OO0 40 00 01 OO0 40 00 01 OO0 40
0o0OCBO: 0O 00 00 40 00 01 00 40 00 01 OO0 40 00 00 OO0 40
D00DOOED: 0O 0D 00 40 0O 00 00 40 00 01 OO0 40 00 00 OO0 40
Dooooodo: 0O 00 00 40 00 01 00 40 00 01 00 40 00 01 00 40
ooooOe0: 00 01 00 40 00 01 00 40 00 00 OO0 40 00 00 OO0 OO0
D0o000Eo

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 339

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads (E4438C and E8267D)

FIR Filter Coefficient Downloads (E4438C and E8267D)

The signal generator accepts finite impulse response (FIR) filter coefficient downloads. After
downloading the coefficients, these user-defined FIR filter coefficient values can be selected as the
filtering mechanism for the active digital communications standard.

Data Requirements

There are two requirements for user-defined FIR filter coefficient files:
1. Data must be in ASCII format.

The signal generator processes FIR filter coefficients as floating point numbers.
2. Data must be in List format.

FIR filter coefficient data is processed as a list by the signal generator’s firmware. See Sample
Command Line.

Data Limitations

Filter lengths of up to 1024 taps (coefficients) are allowed. The oversample ratio (OSR) is the number
of filter taps per symbol. Oversample ratios from 1 through 32 are possible.

The maximum combination of OSR and symbols allowed is 32 symbols with an OSR of 32.

The Real Time I/Q Baseband FIR filter files are limited to 1024 taps, 64 symbols and a 16-times
oversample ratio. FIR filter files with more than 64 symbols cannot be used.

The ARB Waveform Generator FIR filter files are limited to 512 taps and 512 symbols.

The sampling period (At) is equal to the inverse of the sampling rate (FS). The sampling rate is equal
to the symbol rate multiplied by the oversample ratio. For example, the GSM symbol rate is

270.83 ksps. With an oversample ratio of 4, the sampling rate is 1083.32 kHz and At (inverse of FS)
is 923.088 nsec.

Downloading FIR Filter Coefficient Data

The signal generator stores the FIR files in the FIR (/USER/FIR) directory, which utilizes non-volatile
memory (see also “Signal Generator Memory” on page 297). Use the following SCPI command line to
download FIR filter coefficients (file) from the PC to the signal generator’s FIR directory:

: MEMory: DATA FIR <"fil e_nane">, osr, coefficient{, coefficient}
Use the following SCPI command line to query list data from the FIR file:
: MEMory: DATA FIR? <"fil e_nane">

Sample Command Line

The following SCPI command will download a typical set of FIR filter coefficient values and name the
file “FIR1”:

- MEMory: DATA FIR "FIRL", 4,0, 0, 0, O, 0, 0. 000001, 0. 000012, 0. 000132, 0. 001101,

0. 006743, 0. 030588, 0. 103676, 0. 265790, 0. 523849, 0. 809508, 1, 1, 0. 809508, 0. 523849,
0. 265790, 0. 103676, 0. 030588, 0. 006743, 0. 001101, 0. 000132, 0. 000012, 0. 000001, O,
0,0,0,0

340 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads (E4438C and E8267D)

FI R1 assigns the name FIR1 to the associated OSR (over sample ratio) and coefficient
values (the file is then represented with this name in the FIR File catalog)

specifies the oversample ratio

4
0,0,0,0,0,
0. 000001, . .. the FIR filter coefficients

0
0

Selecting a Downloaded User FIR Filter as the Active Filter

NOTE For information on manual key presses for the following remote procedures, refer to the
User’s Guide.

FIR Filter Data for TDMA Format

The following remote command selects user FIR filter data as the active filter for a TDMA modulation
format.

: RAD o: <desired format>: FI LTer <"file_name">

This command selects the user FIR filter, specified by the file name, as the active filter for the TDMA
modulation format. After selecting the file, activate the TDMA format with the following command:

: RAD o: <desi red format>: STATe On

FIR Filter Data for Custom Modulation

The following remote command selects user FIR filter data as the active filter for a custom
modulation format.

: RAD o: QUSTom FI LTer <"fil e_name">

This command selects the user FIR filter, specified by the file name, as the active filter for the
custom modulation format. After selecting the file, activate the TDMA format with the following
command:

: RAD o: QUSTom STATe Onh

FIR Filter Data for COMA and W-CDMA Modulation

The following remote command selects user FIR filter data as the active filter for a CDMA modulation
format. The process is very similar for W-CDMA.

: RADI o: <desired fornat>: ARB: Fl LTer <"file_name">

This command selects the User FIR filter, specified by the file name, as the active filter for the CDMA
or W-CDMA modulation format. After selecting the file, activate the CDMA or W-CDMA format with
the following command:

: RAD o0: <desi red format>: ARB: STATe On

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 341

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads (E4438C and E8267D)

Modulating and Activating the Carrier

The following commands set the carrier frequency and power, and turns on the modulation and the
RF output.

1. Set the carrier frequency to 2.5 GHz:
: FREQuency: Fl Xed 2. 5GH

2. Set the carrier power to -10.0 dBm:
: POMr: LEVel -10.0DBM

3. Activate the modulation:
: QUTPut : M2Dul at i on: STATe ON

4. Activate the RF output:
: QUTPut : STATe ON

342 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Save and Recall Instrument State Files

The signal generator can save instrument state settings to memory. An instrument state setting
includes any instrument state that does not survive a signal generator preset or power cycle such as
frequency, amplitude, attenuation, and other user-defined parameters. The instrument state settings
are saved in memory and organized into sequences and registers. There are 10 sequences with 100
registers per sequence available for instrument state settings. These instrument state files are stored
in the USER/STATE directory. See also, “Signal Generator Memory” on page 297.

The save function does not store data such as Arb waveforms, table entries, list sweep data, and so
forth. Use the store commands or store softkey functions to store these data file types to the signal
generator’s memory catalog. The save function will save a reference to the waveform or data file
name associated with the instrument state.

Before saving an instrument state that has a data file or waveform file associated with it, store the
file. For example, if you are editing a multitone arb format, store the multitone data to a file in the
signal generator’s memory catalog (multitone files are stored in the USER/MTONE directory). Then
save the instrument state associated with that data file. The settings for the signal generator such as
frequency and amplitude and a reference to the multitone file name will be saved in the selected
sequence and register number. Refer to the signal generator’s User’s Guide, Key and Data Field
Reference, or the signal generator’s Help hardkey for more information on the save and recall
functions.

Save and Recall SCPI Commands

The following command sequence saves the current instrument state, using the *SAV command, in
register 01, sequence 1. A comment is then added to the instrument state.

*SAV 01,1
: MEM STAT: COW 01, 1, "I nstrunment state comrent”

If there is a waveform or data file associated with the instrument state, there will be a file name
reference saved along with the instrument state. However, the waveform/data file must be stored in
the signal generator’s memory catalog as the *SAV command does not save data files. For more
information on storing file data such as modulation formats, arb setups, and table entries refer to the
signal generator’s User’s Guide.

NOTE File names are referenced when an instrument state is saved, but a file is not stored with
the save function.

If a saved instrument state contains a reference to a waveform file, ensure that the
waveform file resides in volatile memory before recalling the instrument state. For more
information, see the User’s Guide.

The recall function will recall the saved instrument state. If there is a data file associated with the
instrument state, the file will be loaded along with the instrument state. The following command
recalls the instrument state saved in register 01, sequence 1.

*RCL 01,1

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 343

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Save and Recall Programming Example Using VISA and C#

The following programming example uses VISA and C# to save and recall signal generator instrument
states. Instruments states are saved to and recalled from your computer. This console program
prompts the user for an action: Backup State Files, Restore State Files, or Quit.

The Backup State Files choice reads the signal generator’s state files and stores it on your computer
in the same directory where the State_Files.exe program is located. The Restore State Files selection
downloads instrument state files, stored on your computer, to the signal generator’s State directory.
The Quit selection exists the program. The figure below shows the console interface and the results
obtained after selecting the Restore State Files operation.

The program uses VISA library functions. Refer to the Agilent VISA User’s Manual available on
Agilent’s website: http:\\www.agilent.com for more information on VISA functions.

The program listing for the State_Files.cs program is shown below. It is available on the CD-ROM in
the programming examples section under the same name.

NNT4Microsoft.NET \Framework'v1.1.4322" Stat

1> Backup state file
Restore state files

2>

3> Quit

Enter 1,.2.o0r 3. Your choice:

Re sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence

#a.
#a.
#a.
#a.
#a.
#a.
#a.
#a.
.
1.
.
1.
.
1.

state files
Restore state files

3> Quit
Enter 1.2.0r 3.

Your choice:

C# and Microsoft .NET Framework

The Microsoft .NET Framework is a platform for creating Web Services and applications. There are
three components of the .NET Framework: the common language runtime, class libraries, and Active
Server Pages, called ASP.NET. Refer to the Microsoft website for more information on the NET
Framework.

The .NET Framework must be installed on your computer before you can run the State_Files
program. The framework can be downloaded from the Microsoft website and then installed on your
computer.

Perform the following steps to run the State_Files program.

1. Copy the State_Files.cs file from the CD-ROM programming examples section to the directory
where the .NET Framework is installed.

2. Change the TCPIPO address in the program from TCPIP0::000.000.000.000 to your signal
generator’s address.

344 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Save the file using the .cs file name extension.

Run the Command Prompt program. Start > Run > "emd.exe". Change the directory for the
command prompt to the location where the .NET Framework was installed.

Type csc.exe State_Files.cs at the command prompt and then press the Enter key on the keyboard
to run the program. The following figure shows the command prompt interface.

ommand Prompt {3)

Microsoft Windows 2888 [Ue
{C> Copyright 1985-2888 Microsoft Corp.

C:SWINNT“Microsoft .NET“Framework-wl.1.4322%csc.exe State_Files.cs

The State_Files.cs program is listed below. You can copy this program from the examples directory on
the signal generator’s CD-ROM.

NOTE The State_Files.cs example uses the ESG in the programming code but can be used with the

PSG or Agilent MXG.

[KKKk ok k ok ok ok k ok ok kkkkkkkkkkkkkk ok kkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkhkkkhkkkkhkkkkkk kK ok

Il
Il
Il
Il
Il
I
I
I
Il
I

Fil eNane: State_Files.cs

This C# exanpl e code saves and recalls signal generator instrunent states. The saved
instrunent state files are witten to the local conputer directory conputer where the
State_Files.exe is located. This is a console application that uses DLL inporting to
allow for calls to the unmanaged Agilent 10 Library VI SA DLL.

The Agilent VISA library nust be installed on your conputer for this exanple to run.
I nportant: Replace the visaOpenString with the IP address for your signal generator.

[KKKk k ok ok kk ok ok kk kK kkkkkkkkkk ok kkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkhhkkkkkkkhkkkkkk kK ok

usi ng System

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 345

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

using System | Q

usi ng System Text;

usi ng System Runti ne. | nteropServices;
usi ng System Col | ecti ons;

usi ng System Text. Regul ar Expr essi ons;

nanespace State_Files

cl ass Mai nApp
{

/1 Replace the visaOpenString variable with your instrunent's address.

static public string visaOpenString = "TCPI PO:: 000.000. 000. 000"; //"GPIBO::19";
/1" TCPI PO: : ESG3: : | NSTR';

public const uint DEFAULT_TI MEQUT = 30 * 1000;// Instrunment tineout 30 seconds.
public const int MAX_READ DEVI CE_STRING = 1024; // Buffer for string data reads.
public const int TRANSFER BLOCK_SI ZE = 4096;// Buffer for byte data.

/1 The main entry point for the application.
[STAThr ead]

static void Main(string[] args)

{

uint defaultRM// Open the default VISA resource manager
if (Visalnterop. OpenDefaul tRMout defaultRM == 0) // If no errors, proceed.
{
ui nt device;
/1 Open the specified VISA device: the signal generator
if (Visalnterop. Open(defaul tRM visaQpenString, Vi saAccessMde. NoLock,
DEFAULT_TI MEQUT, out device) == 0)
// if no errors proceed.
{
bool quit = fal se;
V\/?i le (!quit)// Get user input

Consol e. Wite("1) Backup state files\n" +
"2) Restore state files\n" +
"3) Quit\nEnter 1,2,0r 3. Your choice: ");

346 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

string choice = Consol e. ReadLi ne();
switch (choice)

{
case "1":
Backupl nstrunent State(device); // Wite instrunent state
break; /1 files to the conputer
case "2":
{

Rest orel nstrunent St at e(device); // Read instrunent state
break;// files to the sig gen
}
case "3":
{
quit = true;
br eak;
}
defaul t:
{
br eak;
}
}
}
Vi sal nterop. Cl ose(device);// C ose the device
}
el se
{
Consol e. WiteLine("Unable to open

}

+ visaQpenString);

Vi sal nterop. Cl ose(defaul tRM ; /1 Cose the default resource manager

}

el se

{

Consol e. Wi teLine("Unable to open the VI SA resource nanager");

}

/* This method restores all the sequence/register state files located in
the local directory (identified by a ".STA" file name extension)
to the signal generator.*/

static public void Restorelnstrunent State(uint device)

{

Directorylnfo di = new Directorylnfo(".");// Instantiate object class

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 347

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Filelnfo[] rgFiles = di.CGetFiles("*.STA"); [/ Cet the state files
foreach(Filelnfo fi in rgFiles)
{
Match m = Regex. Match(fi.Name, @~(\d)_(\d\d)");
if (m Success)
{
string sequence = m Groups[1].ToString();
string register = mGoups[2].ToString();
Consol e. Wi telLine("Restoring sequence #" + sequence +

, register #' + register);

/* Save the target instrument's current state to the specified sequence/
register pair. This ensures the index file has an entry for the specified
sequence/regi ster pair. This workaround will not be necessary in future
revisions of firmare.*/

WiteDevice(device, "*SAV " + register + ", " + sequence + "\n",
true); // << on SAME line!

// Overwite the newy created state file with the state

/1 file that is being restored.

W iteDevice(device, "MEM DATA \"/USER/ STATE/" + mToString() + "\",",
false); // << on SAME line!

WiteFil eBl ock(device, fi.Nane);

WiteDevice(device, "\n", true);

}

/* This method reads out all the sequence/register state files fromthe signal
generator and stores themin your conputer's local directory with a ".STA"
extension */

static public void BackuplnstrunentState(uint device)

{

// Get the menory catalog for the state directory
WiteDevice(device, "MEM CAT: STAT?\n", false);
string catal og = ReadDevi ce(device);
/* Match the catalog listing for state files which are naned

(sequence#)_(register#) e.g. 0_01, 1_01, 2_05*/

Mat ch m = Regex. Match(catal og, "\"(\\d_\\d\\d),");
whil e (m Success)

{

348 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

/1l Grab the matched filenane fromthe regul ar expresssion
string nextFile = m Groups[1].ToString();

/l Retrieve the file and store with a . STA extension

/1 in the current directory

Consol e. WiteLine("Retrieving state file: " + nextFile);
WiteDevice(device, "MEM DATA? \"/USER/ STATE/" + nextFile + "\"\n", true);

ReadFi | eBl ock(device, nextFile + ".STA");

/1 Clear newine

ReadDevi ce(devi ce);

/1 Advance to next match in catalog string

m = m Next Mat ch();

}

/* This nmethod wites an ASCI| text string (SCPI command) to the signal generator.
If the bool "sendEnd" is true, the END line character will be sent at the
conclusion of the wite. If "sendEnd is false the END line will not be sent.*/

static public void WiteDevice(uint device, string scpi Crd, bool sendEnd)
{
byte[] buf = Encoding. ASCl | . Get Byt es(scpi Cnd);
if (!sendEnd) // Do not send the END |ine character
{
Vi sal nterop. Set Attri bute(device, VisaAttribute.SendEndEnable, 0);
}
uint retCount;
Vi sal nterop. Wite(device, buf, (uint)buf.Length, out retCount);
if (!sendEnd) // Set the bool sendEnd true.
{
Vi sal nterop. Set Attri bute(device, VisaAttribute.SendEndEnable, 1);
}

/1 This nethod reads an ASCI| string fromthe specified device
static public string ReadDevice(uint device)
{
string retValue =
byte[] buf = new byte[MAX_READ DEVI CE_STRING ; // 1024 bytes maxi mum read
uint retCount;
if (Visalnterop.Read(device, buf, (uint)buf.Length -1, out retCount) == 0)

{
retVal ue = Encodi ng. ASCl | . Get String(buf, 0, (int)retCount);

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 349

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

}

return retVal ue;

}

/* The follow ng nethod reads a SCPI definite block fromthe signal generator
and wites the contents to a file on your conputer. The trailing
new i ne character is NOT consuned by the read.*/

static public void ReadFil eBl ock(uint device, string fileName)
{
Il Create the new, enpty data file.
FileStreamfs = new FileStrean(fil eName, Fil eMde. Create);
/1 Read the definite block header: #{l|engthDatalLength}{dataLength}
uint retCount = 0;
byte[] buf = new byte[10];
Vi sal nt er op. Read(devi ce, buf, 2, out retCount);
Vi sal nt er op. Read(devi ce, buf, (uint)(buf[1]-'0"), out retCount);
uint fileSize = U nt32. Parse(Encodi ng. ASCl | . Get String(buf, 0, (int)retCount));
// Read the file block fromthe signal generator
byte[] readBuf = new byte[TRANSFER BLOCK_SI ZE] ;
uint bytesRemmining = fileSize;

while (bytesRenmining != 0)
{
uint bytesToRead = (bytesRemaini ng < TRANSFER _BLOCK_SI ZE) ?
byt esRenmai ni ng : TRANSFER_BLOCK_SI ZE;
Vi sal nt erop. Read(devi ce, readBuf, bytesToRead, out retCount);
fs.Wite(readBuf, 0, (int)retCount);
byt esRenmi ni ng - = ret Count;
}
/1 Done with file
fs.d ose();
}

/* The follow ng nethod wites the contents of the specified file to the
specified file in the formof a SCPl definite block. A newine is

NOT appended to the block and END i s not sent at the conclusion of the
wite. */

static public void WiteFileBlock(uint device, string fil eNane)

{

/1 Make sure that the file exists, otherwi se sends a null block

350 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

if (File.Exists(fileNane))
{
FileStreamfs = new FileStrean(fil eName, Fil eMde. Open);

/1 Send the definite block header: #{lengthDatalLength}{dataLength}

string fileSize = fs.Length. ToString();

string fileSizeLength = fileSize.Length. ToString();
WiteDevice(device, "#" + fileSizeLength + fileSize, false);
/1 Don't set END at the end of wites

Vi sal nterop. Set Attri bute(device, VisaAttribute.SendEndEnabl e,
/1 Wite the file block to the signal generator

byte[] readBuf = new byte[TRANSFER BLOCK_SI ZE] ;

int nunRead = 0;

uint retCount = 0;

while ((nunRead = fs. Read(readBuf, 0, TRANSFER BLOCK_SIZE)) != 0)

{

Vi sal nterop. Wite(device, readBuf, (uint)nunRead, out retCount);

}
/| Go ahead and set END on wites

Vi sal nterop. Set Attri bute(device, VisaAttribute.SendEndEnabl e,
/1 Done with file

fs.d ose();
}

el se

{

/1 Send an enpty definite block
WiteDevice(device, "#10", false);
}
}

}

/1 Declaration of VISA device access constants

public enum Vi saAccessMde

{
NoLock = 0,
Excl usi veLock = 1,
SharedLock = 2,
LoadConfig = 4

}

/1 Declaration of VISA attribute constants
public enum VisaAttribute

{

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

351

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

SendEndEnabl e = 0x3FFF0016,
Ti meout Val ue = Ox3FFFO01A

/1 This class provides a way to call the unmanaged Agilent 10O Library VISA C
/1 functions fromthe C# application

public class Visalnterop
{
[DIllnport("agvisa32.dl 1", EntryPoint="viC ear")]
public static extern int C ear(uint session);

[DIllnport("agvisa32.dl 1", EntryPoint="viC ose")]
public static extern int C ose(uint session);

[DIIlnport("agvisa32.dl 1", EntryPoint="viFi ndNext")]
public static extern int FindNext(uint findList, byte[] desc);

[DIIlnport("agvisa32.dl 1", EntryPoint="viFindRsrc")]
public static extern int FindRsrc(

ui nt session,

string expr,

out uint findList,

out uint retCnt,

byte[] desc);

[DIlInport("agvisa32.dl 1", EntryPoint="viCGetAttribute")]
public static extern int GetAttribute(uint vi, VisaAttribute attribute, out uint attrState);

[DIlInport("agvisa32.dl 1", EntryPoint="vi Open")]
public static extern int Open(

ui nt session,

string rsrcNang,

Vi saAccessMbde accessMode,

uint tineout,

out uint vi);

[DIlInport("agvisa32.dl 1", EntryPoint="vi OpenDefaul t RM')]
public static extern int OpenDefaul t RMout uint session);

[DIlInport("agvisa32.dl 1", EntryPoint="vi Read")]
public static extern int Read(

352 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

ui nt session,
byte[] buf,

ui nt count,

out uint retCount);

[DIlInport("agvisa32.dl 1", EntryPoint="viSetAttribute")]
public static extern int SetAttribute(uint vi, VisaAttribute attribute, uint attrState);

[DIlInport("agvisa32.dl 1", EntryPoint="vi StatusDesc")]
public static extern int StatusDesc(uint vi, int status, byte[] desc);
[DIlnport("agvisa32.dl 1", EntryPoint="viWite")]

public static extern int Wite(
ui nt session,
byte[] buf,
ui nt count,
out uint retCount);

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 353

Creating and Downloading User-Data Files
User Flatness Correction Downloads Using C++ and VISA

User Flatness Correction Downloads Using C++ and VISA

This sample program uses C++ and the VISA libraries to download user-flatness correction values to
the signal generator. The program uses the LAN interface but can be adapted to use the GPIB
interface by changing the address string in the program.

You must include header files and resource files for library functions needed to run this program.
Refer to “Running C++ Programs” on page 65 for more information.

The FlatCal program asks the user to enter a number of frequency and amplitude pairs. Frequency
and amplitude values are entered via the keyboard and displayed on the console interface. The values
are then downloaded to the signal generator and stored to a file named flatCal_data. The file is then
loaded into the signal generator’s memory catalog and corrections are turned on. The figure below

shows the console interface and several frequency and amplitude values. Use the same format, shown
in the figure below, for entering frequency and amplitude pairs (for example, 12ghz, 1. 2db).

Figure 6-3 FlatCal Console Application

xample Program to Download User Flatness Corrections I’

nter number of frequency and amplitude paivs: 2
Enter Freg 1: 12gh=

nter Power 1: 2.3db

Enter Freg 2: 15gh=

nter Power 2: 2.4db

Flatness Data saved to file : flatCal_data

Flatness Corrections Enabled

Press any key to continue

The program uses VISA library functions. The non-formatted viWrite VISA function is used to output
data to the signal generator. Refer to the Agilent VISA User’s Manual available on Agilent’s website:
http:\\www.agilent.com for more information on VISA functions.

The program listing for the FlatCal program is shown below. It is available on the CD-ROM in the
programming examples section as flatcal.cpp.

354 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User Flatness Correction Downloads Using C++ and VISA

[FF R R K Ak ko kK KK Rk KA KK KKK Ak A A KA K KKK KA KKK F KA KA A IR KKK KA KKK IR KA KA KKK KR A KKK IR KK A KK XKk * K

/1 PROGRAM NAME: Fl at Cal . cpp

11

/| PROGRAM DESCRI PTI ON: C++ Consol e application to input frequency and anplitude

// pairs and then download themto the signal generator.

11

/1 NOTE: You nust have the Agilent IO Libraries installed to run this program

11

/1 This exanpl e uses the LANTCPIP interface to downl oad frequency and anplitude

Il correction pairs to the signal generator. The program asks the operator to enter

/1 the nunber of pairs and allocates a pointer array |listPairs[] sized to the nunber
I/ of pairs.The array is filled with frequency nextFreq[] and anplitude nextPower[]

/1 values entered fromthe keyboard.

11

[REE R Rk R Rk kR kK Rk kR Rk Rk kR Rk Rk ok kR kR kR Rk ko kR kR kR kR Rk kK kR Rk
/1 | MPORTANT: Repl ace the 000.000.000.000 | P address in the instQpenString declaration
/1 in the code below with the I P address of your signal generator.

[R R K Rk kA kK KK KK KA KK KKKk A A KR K KK KA KKK IR KA KR KKK KA KKK IR KKK KKK KR A KKK IR KK A AKX Kk * K

#include <stdlib. h>
#i ncl ude <stdio. h>
#include "visa.h"
#include <string. h>

11 | MPORTANT:
I Configure the following |IP address correctly before conpiling and running

char* instQpenString ="TCPI PO:: 000. 000. 000. 000: : I NSTR"; //your PSG s |P address

const int MAX STRI NG LENGTH=20;//!ength of frequency and power strings
const int BUFFER_SI ZE=256;//1 ength of SCPI command string

int main(int argc, char* argv[])
{

Vi Session defaul tRM vi;
Vi Status status = 0;

status = vi OpenDef aul t RM &def aul t RV ;//open the default resource nmanager

// TO DO Error handling here

status = vi Open(defaul tRM instOpenString, VI_NULL, WVI_NULL, &vi);

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 355

Creating and Downloading User-Data Files
User Flatness Correction Downloads Using C++ and VISA

if (status)//if any errors then display the error and exit the program

{
fprintf(stderr, "viOpen failed (%)\n", instOpenString);
return -1;

printf("Exanple Programto Downl oad User Flatness Corrections\n\n");

printf("Enter nunber of frequency and anplitude pairs: ");
int num= 0;

scanf ("9d", #

if (num> 0)

{

int lenArray=nunt2;//length of the pairsList[] array. This array

//will hold the frequency and anplitude arrays

char** pairsList = new char* [lenArray]; //pointer array

for (int n=0; n < lenArray; n++)//initialize the pairsList
/] pai rsLi st [n] =0;

for (int i=0; i < num i++)

{

char* next Freq = new char[MAX_STRI NG _LENGTH+1]; //frequency array
char* next Power = new char [MAX_STRI NG_LENGTH+1] ; // anpl i tude array

//enter frequency and anplitude pairs i.e 10ghz . 1db

printf("Enter Freq %l: ", i+1);
scanf ("%", nextFreq);
printf("Enter Power %d: ",i+1);

scanf ("9%", nextPower);
pairsList[2*i] = nextFreq;//frequency
pai r sLi st [2*i +1] =next Power ; / / power correction

}

unsi gned char str[256];//buffer used to hold SCPI conmand

/linitialize the signal generator's user flatness table
sprintf((char*)str,":corr:flat:pres\n"); //wite to buffer
viWite(vi, str,strlen((char*str),0); //wite to PSG
char ¢ =',";//comm separator for SCPI conmand

for (int j=0; j< num j++) // downl oad pairs to the PSG

356 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
User Flatness Correction Downloads Using C++ and VISA

{

sprintf((char*)str,":corr:flat:pair % % %\n",pairsList[2*j], c,
pairsList[2*j+1]); // << on SAME li ne!

viWite(vi, str,strlen((char*)str),0);
}
//store the downl oaded correction pairs to PSG nenory
const char* fileName = "flatCal _data";//user flatness file name
/lwite the SCPI conmand to the buffer str
sprintf((char*)str, ":corr:flat:store \"%\"\n", fileNane);//wite to buffer
viWite(vi,str,strlen((char*)str),0);//wite the conmand to the PSG
printf("\nFlatness Data saved to file : %\n\n", fileNanme);

/11 oad corrections
sprintf((char*)str,":corr:flat:load \"%\"\n", fileNane); //wite to buffer
viWite(vi,str,strlen((char*)str),0); //wite conmand to the PSG
//turn on corrections
sprintf((char*)str, ":corr on\n");
viWite(vi,str,strlen((char*)str),0");
printf("\nFl atness Corrections Enabled\n\n");
for (int k=0; k< lenArray; k++)

{

delete [] pairsList[k];//free up nenmory

}

delete [] pairsList;//free up nenory

vi Close(vi);//close the sessions
vi Cl ose(defaul tRV;

return O;

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 357

Creating and Downloading User-Data Files
Data Transfer Troubleshooting (E4438C and E8267D Only)

Data Transfer Troubleshooting (E4438C and E8267D Only)

NOTE This section applies only to the E4438C with Option 001/601 or 002/602, and the E8267D
with Option 601 or 602.

This section is divided by the following data transfer methods:

“User File Download Problems” on page 358

“PRAM Download Problems” on page 359

“User FIR Filter Coefficient File Download Problems” on page 360
Each section contains the following troubleshooting information:

¢ a list of symptoms and possible causes of typical problems encountered while downloading data
to the signal generator

* reminders regarding special considerations and file requirements

* tips on creating data, transferring data, data application and memory usage

User File Download Problems

Table 6-15 Use-File Download Trouble - Symptoms and Causes

Symptom Possible Cause

Data does not completely fill an integer number of timeslots.

At the RF output, If a user file fills the data fields of more than one timeslot in a continuously repeating framed
some data modulated, transmission, the user file will be restarted after the last timeslot containing completely filled
some data missing data fields. For example, if the user file contains enough data to fill the data fields of 3.5

timeslots, firmware will load 3 timeslots with data and restart the user file after the third
timeslot. The last 0.5 timeslot worth of data will never be modulated.

Data Requirements
* The user file selected must entirely fill the data field of each timeslot.

¢ The user file must be a multiple of 8 bits, so that it can be represented in ASCII characters.
¢ Available volatile memory must be large enough to support both the data field bits and the
framing bits.

Requirement for Continuous User File Data Transmission

“Integer Number of Timeslots” Requirement for Multiple-Timeslots

If a user file fills the data fields of more than one timeslot in a continuously repeating framed
transmission, the user file is restarted after the last timeslot containing completely filled data fields.
For example, if the user file contains enough data to fill the data fields of 3.5 timeslots, the firmware

358 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Data Transfer Troubleshooting (E4438C and E8267D Only)

loads 3 timeslots with data and restart the user file after the third timeslot. The last 0.5 timeslot
worth of data is never modulated.

To solve this problem, add or subtract bits from the user file until it completely fills an integer
number of timeslots
“Multiple-of-8-Bits” Requirement

For downloads to bit and binary memory, user file data must be downloaded in multiples of 8 bits
(bytes), since SCPI specifies data in bytes. Therefore, if the original data pattern’s length is not a
multiple of 8, you need to:

* add bits to complete the ASCII character
¢ replicate the data pattern to generate a continuously repeating pattern with no discontinuity

e truncate the excess bits

NOTE The “multiple- of-8-bits” data length requirement is in addition to the requirement of
completely filling the data field of an integer number of timeslots.

Using Externally Generated, Real-Time Data for Large Files

When the data fields must be continuous data streams, and the size of the data exceeds the available
PRAM, real-time data and synchronization can be supplied by an external data source to the

front- panel DATA, DATA CLOCK, and SYMBOL SYNC connectors. This data can be continuously
transmitted, or can be framed by supplying a data-synchronous burst pulse to the EXT1 INPUT
connector on the front panel. Additionally, the external data can be multiplexed into internally
generated framing

PRAM Download Problems

Table 6-16 PRAM Download - Symptoms and Causes

Symptom Possible Cause

Pattern reset bit not set.

The transmitted pattern is interspersed

with random, unwanted data. Insure that the pattern reset bit (bit 7, value 128) is set on the last byte of your

downloaded data.

PRAM download exceeds the size of PRAM memory.

ERROR -223, Too much data Either use a smaller pattern or get more memory by ordering the appropriate
hardware option.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 359

Creating and Downloading User-Data Files
Data Transfer Troubleshooting (E4438C and E8267D Only)

Data Requirements

¢ The signal generator requires a file with a minimum of 60 bytes

* For every data bit (bit 0), you must provide 7 bits of control information (bits 1-7).

Table 6-17 PRAM Data Byte

Bit Function Value Comments

0 Data 0/1 This is the data (payload) bit. It is “unspecified” when burst (bit 2) is set to 0.

1 Reserved 0 Always 0

2 Burst 0/1 1 = RF on
0 = RF off
For non-bursted, non-TDMA systems, to have a continuous signal, set this bit to 1 for all
bytes. For framed data, set this bit to 1 for on timeslots and 0 for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0

6 EVENT1 0/1 To have the signal generator output a single pulse at the EVENT 1 connector, set this bit

Output to 1. Use this output for functions such as a triggering external hardware to indicate when

the data pattern begins and restarts, or creating a data-synchronous pulse train by
toggling this bit in alternate bytes.

7 Pattern Reset 0/1 0 = continue to next sequential memory address.
1 = end of memory and restart memory playback.
This bit is set to 0 for all bytes except the last byte of PRAM. To restart the pattern, set
the last byte of PRAM to 1.

User FIR Filter Coefficient File Download Problems

Table 6-18 User FIR File Download Trouble - Symptoms and Causes

Symptom

Possible Cause

ERROR -321, Out of memory

There is not enough memory available for the FIR coefficient file being
downloaded.

To solve the problem, either reduce the file size of the FIR file or delete
unnecessary files from memory.

ERROR -223, Too much data

User FIR filter has too many symbols.

Real-Time cannot use a filter that has more than 64 symbols (512
symbols maximum for Arb). You may have specified an incorrect
oversample ratio in the filter table editor.

360

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User-Data Files
Data Transfer Troubleshooting (E4438C and E8267D Only)

Data Requirements

e Data must be in ASCII format.
¢ Downloads must be in list format.

Filters containing more symbols than the hardware allows (64 for real-time and 512 for Arb) will
not be selectable for the configuration.

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 361

Creating and Downloading User-Data Files
Data Transfer Troubleshooting (E4438C and E8267D Only)

362 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Symbols
NET framework, 343

Numerics
2’s complement data format, 201
8757d
GPIB addresses, 106
pass-thru commands, 105
pass-thru programming, 106

A

abort function, 70, 71
address
GPIB address, 24
IP address, 29
Agilent
BASIC, See HP BASIC
e8663b
global settings, configuring, 18, 293
memory allocation, non-volatile memory, 300
memory allocation, volatile memory, 299
Pulse/RF Blank, configuring, 293
setting GPIB address, 24
volatile memory types, 297
web server, on, 11
esg
Download Assistant, 241
global settings, configuring, 18, 293

memory allocation, non-volatile memory, 213, 300

memory allocation, volatile memory, 299
Pulse/RF Blank, configuring, 293
setting GPIB address, 24
volatile memory types, 297
web server, on, 11

10 Libraries
Suite, using interactive IO, 37
version J, 40
Version M, 6
version M, 6, 37, 40, 58
versions, earlier, 6

mxg
Download Assistant, 241
global settings, configuration, 18
global settings, configuring, 293

memory allocation, non-volatile memory, 212, 299, 300

memory allocation, volatile memory, 299
setting GPIB address, 24
volatile memory types, 297
web server, on, 11
psg
Download Assistant, 241
global settings, configuring, 18, 293

memory allocation, non-volatile memory, 213, 300

I ndex

memory allocation, volatile memory, 299
Pulse/RF Blank, configuring, 293
setting GPIB, 24
volatile memory types, 297
web server, on, 11
SICL, 8, 26, 70
Signal Studio, 241
Signal Studio Toolkit, 194
VISA, 8, 26, 48, 58, 70
VISA COM Resource Manager 1.0, 66
Agilent 10 Libraries
earlier, 6
Suite, 5
Agilent IO Libraries Suite, 5
Agilent VISA, 8
ARB waveform file downloads
data requirements
waveform, 195
download utilities, 194, 241
ASCII, data, 73
AUXILIARY INTERFACE, See RS-232

B

baseband operation status group, registers, 171-173

Baseband Studio
for Waveform Capture and Playback, 207
BASIC
ABORT, 70
CLEAR, 73
ENTER, 74
LOCAL, 72,73
LOCAL LOCKOUT, 72
OUTPUT, 73
REMOTE, 71
See HP BASIC
big- endian
byte order, interleaving and byte swapping, 229
changing byte order, 198
example, programming, 277
binary
data
framed, 308
unframed, 307
file
downloads commands, 316
modifying hex editor, 318
bit
file
downloads and commands, 315
modifying hex editor, 319
order, user file, 304
status, monitoring, 158
values, 157

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

363

I ndex

bits and bytes, 196

byte order
byte swapping, 198
changing byte order, 198
interleaving 1/Q data, 229

C

C
AC-coupled FM signals
generating externally applied, 87
CW signals, generating, 85
data questionable
status register, reading, 97

FM signals, generating internally applied, 89

reading the service request interrupt, 101
Sockets LAN, programming, 112
states, saving and recalling, 95
C and VISA
GPIB
queries, 83
GPIB, interface check, 76
C#
programming examples, 66
remote control, 9
VISA, example, 344
C++
programming examples, 65, 245
VISA, generating a step-swept signal, 91
C++ and VISA
generating a step-swept signal, 91
C/C++,9
cable
USB, 59
carrier
activating, FIR filters, 342
modulating, FIR filters, 342
CDMA modulation
data, FIR filter, 341
Checking Available Memory, 301
clear
command, 73
function, 73
CLS command, 160
command
CLS, 160
format programming, user file data, 313
format user file, downloading, 312
prompt, 36, 136
window PC, using, 320
window UNIX, using, 320
commands
8757d
pass-thru, troubleshooting, 107

Agilent mxg, menu path, 17
downloads, binary file, 316
downloads, bit file, 315
e8663b, 17
e8663b, menu path, 17
esg, menu path, 17
GPIB, 70, 71,72,73,74
pass-thru, 8757d, 105
psg, menu path, 17
computer interface, 3
computer- to- instrument communication
VISA
configuration, automatic, 6
VISA configuration, (manual), 6
condition registers, description, 165
configuring, VXI-11, 40
connection expert, 5
connection wizard, 5
controller, 25
creating waveform data
C++, using, 225
saving to a text file for review, 228
creating waveform files
overview, 193
crossover cable, private LAN, 35
csc.exe, 343
custom
modulation data, FIR filter, 341
real-time, high data rates, 323
user file data, memory usage, 309

D

DAC input values, 199
data
binary, framed, 308
binary, unframed, 307
encryption, 216, 217
format, e443xb signal generator, 242
requirements, waveform, 195
data questionable
See also data questionable registers
filters
BERT transition, 191
calibration transition, 187
frequency transition, 181
modulation transition, 184
power transition, 178
transition, 176
groups
BERT status, 189
calibration status, 186
frequency status, 180
modulation status, 183

364

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

power status, 177
status, 174
status register
reading, using VISA and C, 97
data questionable registers
BERT event, 191
BERT event enable, 191
BERT, condition, 190
calibration condition, 187
calibration event, 187
calibration event enable, 188
condition, 175
event, 176
event enable, 176
frequency condition, 181
frequency event, 181
frequency event enable, 182
modulation condition, 184
modulation event, 184
modulation event enable, 185
power condition, 178
power event, 178
power event enable, 179
data rates, high
custom, real-time, 323
data requirements, FIR filter downloads, 340
data types
binary, 296
bit, 296
defined, 296
FIR filter states, 296
PRAM, 296
user flatness correction, 296
decryption, 216, 217
developing programs, 64
device, add, 7
DHCP, 10, 32
directory, root, 298
DNS, 36
documentation, ix
DOS command prompt, 42
download
binary file data, 307
bit file data, 304
FIR filter coefficient data, 340
user file data
FTP procedures, 319
unencrypted files for extraction, 337
unencrypted files for no extraction, 338
user flatness, 343
utilities
Agilent Signal Studio, Toolkit, 194
differences, 241
Download Assistant, 194

I ndex

IntuiLink for signal generators, 194
waveform data
advanced programming languages, 235
commands, 216
e443xb signal generator files, 199, 242
encrypted files for extraction, 221
encrypted files for no extraction, 220
FTP procedures, 223
memory locations, 217
overview, 193, 232
simulation software, 232
unencrypted files for extraction, 220
unencrypted files for no extraction, 219
user-data files, using, 295
download libraries, 7, 8
downloaded PRAM files
data sources, 335
downloading
block data
SCPI command, 332
SCPI command, programming syntax, 333
C++, using, 245
HP Basic, 283
MATLAB, 273
Visual Basic, 280
downloads, PRAM data
e4438c, 326
e8267d, 326

E

e443xb
files
downloading, 242, 243
formatting, 199, 242
programming examples, 263
storing, 242
programming examples, 283
e8663b
See Agilent e8663b
edit VISA config, 7
EnableRemote, 71
encryption
downloading
for extraction, 221
for no extraction, 220
extracting waveform data, 221
I/Q files, 216
1/Q files, agilent mxg (only), 217
securewave directory
agilent mxg (only), 217
esg, 216
psg, 216
waveform data, 216

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 365

I ndex

enter function, 74
errors, 19, 37
ESE commands, 160
esg
See Agilent esg
even number of samples, 205
event enable register
description, 165
event registers
description, 165
example programs See programming examples, 245
examples
pass-thru commands, 105
save and recall, 344
Telnet, 46
external media
See media
externally applied AC-coupled FM signals
generate, using VISA and C, 87
extract user file data, 337-338
extracting
PRAM files, 336

F

file size
determining
PRAM, 330
minimum
PRAM, 331
PRAM, 330
file types
See data types
files
decryption, 216, 217
download utilities, 241
encryption, 216
encryption, agilent mxg (only), 217
error messages, 19
extraction commands and file paths, 219
header information, 203, 216, 217
large, generating real-time data, 359
PRAM, modifying, 338
transfer methods, 218
transferring, 46
waveform structure, 203
filters
See transition filters
FIR
filter data
CDMA modulation, 341
custom modulation, 341
TDMA format, 341
W-CDMA modulation, 341

filters
carrier, activating, 342
carrier, modulating, 342
data limitations, 340
firmware status, monitoring, 158
framed data, usage
volatile memory, PRAM, 310
front panel
USB
connector, Type-A, 61
external media, 59, 60
flash memory sticks, 59, 60
FTP
commands for downloading and extracting files, 338
downloading and extracting files, commands, 220-222
internet explorer, using, 319
methods, 218
procedures for downloading files, 223, 319
using, 46
web server procedure, 224, 320

G

Getting Started Wizard, 25
global settings
Agilent mxg, 18, 293
e8663b, 18, 293
esg, 18, 293
psg, 18,293
GPIB
8757d, addresses, 106
address, 24, 108
Agilent mxg, setting address, 24
configuration, 24
controller, 25
e8663b, setting address, 24
esg, setting address, 24
interface, 3, 24
interface cards, 22, 68
10 libraries, 7
listener, 25
overview, 22, 68
program examples, 26, 70, 76, 83
SCPI commands, 25
talker, 25
troubleshooting, 25
using VISA and C, 76
verifying operation, 25
GPIB address
psg, setting address, 24
guides, ix

H

hardware

366 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

layers, remote programming, 2
status, monitoring, 158
help mode
setting
Agilent mxg, 18
e8663Db, 18
esg, 18
psg, 18
hex editor
binary file, modifying, 318
bit file, modifying, 319
hexadecimal data, 277
hostname, 29, 108
hostname, setting
Agilent mxg, 31
Agilent mxg menus, 29
DHCP LAN, e8663b, 34
DHCP LAN, esg, 34
DHCP LAN, psg, 34
DHCP/Auto I/P LAN, Agilent mxg, 33
esg/psg/e8663b, 31
esg/psg/e8663b menus, 30
HP BASIC, 9
HP Basic
I/0 library, 48
local lockout, 77
programming examples, 283
queries, 80
RS-232
control, 48
queries, 55, 143
HyperTerminal, 52

1/0 libraries
See 10 libraries
1/Q data
creating, advanced programming languages, 225
encryption, 216
encryption, agilent mxg (only), 217
interleaving
big endian and little endian, 229
byte swapping, 229
little endian, byte swapping, 229
waveform data, creating, 202
memory locations, 211, 230
saving to a text file for review, 228
scaling, 200
waveform structure, 205
iabort, 70
ibloc, 72, 73
ibstop, 70
ibwrt, 73

iclear, 73
IEEE standard, 22, 68
igpibllo, 72
iloc, 72
input values, DAC, 199
installation guide, ix
instrument
communication, 6
state files
overview, 343
SCPI commands, recalling, 343
SCPI commands, saving, 343
instrument status, monitoring, 148
interactive 10,5, 37
interface
cards, 22, 68
GPIB, 24
LAN, 3
RS-232,3
USB (Agilent mxg only), 3
interleaving, See 1/Q data, 202
internal
web server
FTP procedure, 319
internal media
See media
internally applied FM signals
generate, using VISA and C, 89
IntuiLink for signal generators, 198, 241
10 Config
Agilent 10 libraries Suite, 5
computer- to- instrument communication, 6
VISA assistant, 38
VISA, manual, 7
10 interface, 6
10 libraries, 5
Agilent, suite, 5
GPIB interface, installing, 22
GPIB, installing interface cards, 68
GPIB, selecting for, 7
GPIB, verifying, 25
interactive 10, using, 37
program languages, overview, 5
RS-232, selecting for, 48
signal generator, remote control, 2
suite, overview, 5
USB, selecting for, 57
VISA LAN, troubleshooting, 38
IP address
LAN interface, 29
LAN, assigning, 29
setting, 29, 30, 33, 34
setting Agilent mxg, 31
setting esg/psg/e8663b, 31

I ndex

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

367

I ndex

iremote, 71 byte order, interleaving and byte swapping, 229
loading waveforms, 238

J local

JAVA, 67, 136 EChO, telnet, 45

Java function, 72

local lockout

example, 67, 136
function, 72

L HP Basic, using, 77
i 9 location user-data file type
LabView, binary, 301
LAN s LSB, 196
conf}g,) LSB and MSB, 304
confl.guratlon LSB/MSB, 277
Agilent mxg, 31, 33
esg/psg/e8663Db, 31
> M
menu, Agilent mxg, 29)
menu. esg/psg/e8663b, 30, 34 manual operation, 71

summary, Agilent mxg, 15 marker file, 203, 216, 217
web server, 10 MATLAB, 9 N
DHCP configuration, 32 download utility, 241

establishing a connection, 233, 235 downloading data, 232
hostname. 29 programming examples, 270

interface. 3 programming, introduction, 9

10 libraries, 8 media

manual configuration, 30 external
overview, 28 flash memory sticks, 59

front panel USB, 59

private, 35
program examples, 67, 108, 136, 138 non-volatile memory, Agilent mxg, 297
programming storage, non-volatile, 60

using JAVA, 67, 136 waveform memory, 209
queries using sockets, 115 internal
sockets, 108 non-volatile memory, Agilent mxg, 297
sockets LAN, 28 non-volatile storage, 60
Telnet, 42 waveform memory, 209

memory

troubleshooting, 36

verifying operation, 36 See also media
VXI-11 allocation, 212, 299

checking, available, 301

defined, 209, 297

location user-data file type
available memory, checking, 301

examples, using, 108

interface protocols, 28

perl, using, 138

programming examples, LAN, 108

sockets, programming, 67, 136 bit, 301
libraries FIR, 301
GPIB functionality, verifying, 25 flatness, 301
GPIB 1/0 libraries, selecting, 7 instrument state, 301
10, Agilent, 2,5 PRAM, 301
RS-232, 48 locations, 209, 297
selecting, for computer, 8 non-volatile (NVWFM), 216, 217
USB, 57 signal generator, maximum, 301

list format, downloading size, ?14, 300
SCPI command, 331 volatile (WFM1), 217
volatile and non-volatile, 297

memory usage
user file data

list, error messages, 19
listener, 25
little- endian

368 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

custom, 309
TDMA, 309
Microsoft .NET Framework
overview, 344
Mini-B
Rear panel connector, 61
MSB, 196
MSB and LSB, 304
MS-DOS Command Prompt, 36, 42
multiple- of- 8-bits requirement
user file data, 359
multiple- timeslots
integer number of timeslots, 358
mxg
See Agilent mxg

N
n5181a/82a

Pulse/RF Blank configuring, 293
National Instruments

NI-488.2, 26, 70

VISA, 8, 26, 48, 58, 70

negative transition filter, description, 165

NI libraries

SICL

GPIB I/0 libraries, selecting, 8

NI-488.2

EnableRemote, 71

functions, 8

GPIB I/0 libraries, selecting, 8

ibler, 73

ibloc, 72, 73

ibrd, 74

ibstop, 70

ibwrt, 73

LAN I/0O libraries, selecting, 8

queries using C++, 81

RS-232 1/0 libraries, selecting, 48

SetRWLS, 72

USB 1/0 libraries, selecting, 57, 58

VISA, 8,48
non-volatile memory
available
SCPI query, 302
external media, 59
external media, Agilent mxg, 297
internal media, Agilent mxg, 297
memory allocation, 300
Agilent mxg, 212, 299
esg, 213
psg, 213
securewave directory, 217
waveform, 209

0]

OPC commands, 160
output command, 73
output function, 73

2]

pass-thru commands, 105

PC, 277

PCI-GPIB, 26, 70

PERL
example, 138

phase discontinuity
avoiding, 206

I ndex

Baseband Studio, for Waveform Capture and Playback,

207
samples, 207
waveform, 206
phase distortion, 206
ping
program, 36
responses, 37
playing waveforms, 238

polling method (status registers), 158

ports, 112

positive transition filter, description, 165

PRAM
as data sources, 335
bit positions, 328
byte patterns, 328

data extracting SCPI command, syntax, 337

downloads, problems, 359
e4438c, data downloads, 326
e8267d, data downloads, 326
file size, 330

minimum, 331
file size, determining, 330
files

command syntax, for restoring, 336
command syntax, for storing, 336

extracting, 336
modifying, 338

non-volatile memory, storing, 336

understanding, 327
volatile memory, restoring, 336
volatile memory
framed data, usage, 310
unframed data, usage, 310
waveform, viewing, 329
private LAN, using, 35
problems
user
file downloads, 358
FIR filter downloads, 360

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

369

I ndex

programming See also data questionable registers
8757d, using pass-thru, 106 See also status registers
creating waveform data, 225 baseband operation
downloading waveform data, 232 condition, 172
guide, ix event, 173
little endian order, byte swapping, 229 event enable, 173
user file data condition, description, 165
command format, 313 e8663b overall system, 151, 152
programming examples esg overall system, 153, 154
C#, 66, 344 mxg overall system, 149, 150
C++, 65, 245 psg overall system, 155, 156
e443xb standard event
files, 263 bits, 167
e443xb files, 283 status, 167
HP Basic, 283 status enable, 167
introduction, 245 standard operation
MATLAB, 270 condition, 169
pass-thru commands, 105 event, 170
RS-232, queries using VISA and C, 56, 144 event enable, 170
RS-232; using VISA and C, 55, 141 status byte, 164
using, 64 status groups, register type descriptions, 165
using GPIB, 26, 70, 76, 83 remote annunciator, 140
using LAN, 67, 108, 136, 138 remote function
using RS-232, 54, 140 HP Basic, 71
Visual Basic, 277, 280 setting
VXI-11, 108 Agilent mxg, 17
psg e8663Db, 17
See Agilent psg esg, 17
Pulse/RF Blank psg, 17
e8663b, setting, 293 setting, e8663b, 17
esg, setting, 293 remote interface
n5181a/82a, setting, 293 programming, 2
psg, setting, 293 RS-232, 48
USB, 57
Q remote programming

hardware layers, 2

queries
software layers, 2

HP Basic, using, 80

queue, error, 19 RS-232
address, 54, 140
R baud rate, 50
cable, 51

ramp sweep, using pass-thru commands, 105 configuration, 50

real- tlmf%) echo, setting, 50
data files, generating large, 359 format parameters, 53
TDMA '

HP Basic, using queries, 55, 143
interface, 50

interfaces, 3

10 libraries, 48

overview, 48

user files, 320
rear panel connector
Mini- B, 61
recall states, 343

references, ix program examples, 54, 140

register SY§tem overview, 148 programming examples, queries using VISA and C, 56,
data questionable 144

See also data questionable registers programming examples, using VISA and C, 55, 141

registers settings, baud rate, 54, 140

370 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

verifying operation, 52

S

samples
even number, 205
waveform, 205
save and recall, 343
scaling I/Q data, 200
SCPI
error queue, 19
file transfer methods, 218
GPIB, overview, 22
programming languages, common, 9
reference, ix
register model, 148
web server control, 10
SCPI command, programming syntax
block data, downloading, 333
SCPI command, syntax
PRAM files, extracting, 337
SCPI commands
block data, downloading, 332
command line structure, 218
download e443xb files, 243
encrypted files, 220, 221
extraction, 216, 219, 220, 221, 337
for status registers
IEEE 488.2 common commands, 160
GPIB function statements, 25
instrument state files, recalling, 343
instrument state files, saving, 343
list format, downloading, 331
no extraction, 219, 220
unencrypted files, 219, 220, 337, 338
user FIR file downloads
sample command line, 340
securewave directory
decryption, file, 216, 217
downloading encrypted files, 221
downloads, file, 216,217
encryption, file, 216, 217
extracting waveform data, 221
extraction, file, 216, 217
sequences
waveforms, building, 240
service guide, ix
service request
interrupt
reading, using VISA and C, 101
method
status registers, 159
using, 159
SetRWLS, 72

I ndex

setting
help mode
Agilent mxg, 18
e8663Db, 18
esg, 18
psg, 18
Pulse/RF Blank
e8663Db, 293
esg, 293
n5181a/82a, 293
psg, 293
SICL, 8, 48, 58
GPIB examples, 26, 70
iabort, 70
iclear, 73
igpibllo, 72
iloc, 72
iprintf, 73
iremote, 71
iscanf, 74
NI libraries, 8
USB, using, 57
VXI-11, programming, 109
signal generator
Download Assistant, 241
monitoring status, 148
volatile memory types, 297
Signal Studio Toolkit, 194, 241
simulation software, 232
sockets
example, 112, 115
Java, 67, 136
LAN, 41, 108, 112
PERL, 138
UNIX, 112
Windows, 114
software
layers, remote programming, 2
libraries, 10,5
SRE commands, 160
SRQ command, 159
SRQ method, status registers, 159
standard event status
enable register, 167
group, 166
register, 167
standard operation
condition register, 169
event enable register, 170
event register, 170
transition filters, 170
state files, 343
states
saving and recalling, using VISA and C, 95

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 371

I ndex

status byte

e8663b overall register system, 151, 152
esg overall register system, 153, 154

group, 163

mxg overall register system, 149, 150
psg overall register system, 155, 156

register, 164
status groups
baseband operation, 171-173
data questionable
BERT, 189
calibration, 186
frequency, 180
modulation, 183
overview, 174
power, 177
registers, 165
standard
event, 166
status byte, 163
status registers
See also registers
accessing information, 158
bit values, 157
esg overall system, 154
hierarchy, 148
in status groups, 165
monitoring, 158
mxg overall system, 149, 150
overall system, 153
programming, 147
SCPI commands, 160
SCPI model, 148
setting and querying, 160
system overview, 148
using, 157
STB command, 160
system requirements, 64

T

talker, 25
TCP/IP, 10
TCPIP, 6, 38, 108
TDMA
data, FIR filter, 341
user file data, memory usage, 309
Telnet
DOS command prompt, 42
example, 46
PC, 43
UNIX, 45
using, 42
Windows 2000, 44

Windows XP, 44
timeslots, integer number of
multiple- timeslots requirement, 358
Toolkit, Signal Studio, 194, 241
transition filters
baseband operation, 172
data questionable
BERT, 191
modulation, 184
negative and positive, 176
power, 178
data questionable calibration, 187
data questionable frequency, 181
description, 165
negative transition, description, 165
positive transition, description, 165
standard operation, 170
troubleshooting
8757d, pass-thru commands, 107
GPIB, 25
LAN, 36
ping
response errors, 37
PRAM downloads, 359
RS-232,53
USB, 61
user file downloads, 358
user FIR filter downloads, 360
VISA assistant, 38
Type- A front panel USB connector, 61

u

unencrypted files
downloading for extraction, 220, 337
downloading for no extraction, 219, 338
extracting I/Q data, 337
unframed data, usage
volatile memory, PRAM, 310
USB
cable, 59
functionality, verification, 61
interface, 3
10 libraries, 57
setting up, 59
using, Agilent mxg, 57
verifying operation, 61
user data
file, modifying, 318
files, creating, 295
files, downloading, 295
memory, 297
root directory, 298
user documentation, ix

372

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

user file data, continuous transmission
requirements, 358
user files
bit order, 304
bit order, LSB and MSB, 304
data
binary, downloads, 303
bit, downloads, 303
multiple- of- 8-bits requirement, 359
downloading
as the data source, 335
carrier, activating, 336
carrier, modulating, 336
command format, 312
modulating and activating the carrier, 318
selecting the user file as the data source, 317
framed transmissions, understanding, 320
real-time TDMA, 320
size, 308
user FIR file downloads
non-volatile memory, 340
selecting a downloaded user FIR file, 341
user flatness, 343
user-data file type
binary, memory location, 301
bit, memory location, 301
FIR, memory location, 301
flatness, memory location, 301
instrument state, memory location, 301
memory location, 301
PRAM, memory location, 301
user-data files
See user data

V

verifying waveforms, 238
Version M
10 Libraries, Agilent,5, 6
viPrintf, 73
VISA, 8, 48, 58
C++, generating a step-swept signal, 91
COM IO Library, 66
computer- to- instrument communication, 6
configuration
automatic, 7
manual, 7
CW signals, generating, 85
data questionable status register, reading, 97
FM signals, generating internally applied, 89

generating externally applied AC-coupled FM signals,

87
I/0 libraries, 8
LAN client, 37

LAN, using, 8
library, 26, 70, 277
NI-488.2,8
RS-232, using, 48
scanf, 74
service request interrupt, reading, 101
states, saving and recalling, 95
USB, using, 57
viPrintf, 73
Visual C++, generating a swept signal, 92
viTerminate, 70
VXI-11, 108
CW signals
See VISA and C
VISA and C
CW signals, generating, 85
GPIB
interface check for, 76
queries, 83
VISA Assistant
configuring and running, 38
GPIB functionality, verifying, 25
10 Config, 6
10, Using interactive, 37
troubleshooting, 38
verifying instrument communication, 37
Visual Basic
IDE, 66
programming examples, 277
programming language, 9
references, 66
Visual C++
NI-488.2, queries using, 81
VISA, generating a swept signal, 92
Visual C++ and VISA
generating a swept signal, 92
viTerminate, 70
volatile memory
file, decryption, 216, 217
file, encryption, 216, 217
memory allocation, 212
Agilent e8663b, 299
Agilent esg, 299
Agilent psg, 299
securewave directory, 216, 217
memory, volatile (WFM1), 216
signal generator, 297
types, signal generators, 297
waveform, 209
volatile memory available, SCPI query, 302
VXI-11, 108
configuration, 40
programming, 108
programming interface examples, 108

I ndex

Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

373

I ndex

SICL, using, 109 mxg, 11
using, 40 communicating with, 10
VISA, using, 110 e8663b, 11
esg, 11
w internal, 319
waveform data psg, 11
2’s complement data format, 201 Windows
bits and bytes, 196 2000, 44
byte order, 198 98,5
byte swapping, 198 ME, 5
NT, 6

commands for downloading and extracting, 216-224,
312-320 XP, 44
creating, 225 WriteIEEEBlock, 280
DAC input values, 199
data requirements, 195
encryption, 216-221
explained, 196
extracting, 216, 220-221
I and Q interleaving, 202
LSB and MSB, 196
saving to a text file for review, 228
waveform downloads
advanced programming languages, using, 235
download utilities, using, 241
HP BASIC, using, 283-290
memory, 209
allocation, 212, 299
size, 214, 300
volatile and non-volatile, 209
samples, 205
simulation software, using, 232
structure, 205
troubleshooting files, 292
using advanced programming languages, 235
with Visual Basic 6.0, 280
waveform files
creating, 193
downloading, 193
waveform generation
C++,245
HP Basic, using, 283
MATLAB, using, 270
Visual Basic 6.0, using, 277
waveforms
loading, 238
playing, 238
sequences, building, 240
verifying, 238
viewing, PRAM, 329
W-CDMA modulation data, FIR filter
See FIR
web server
Agilent

374 Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

	Title Page
	Table of Contents
	1 Getting Started with Remote Operation
	Programming and Software/Hardware Layers
	Interfaces
	IO Libraries and Programming Languages
	Agilent IO Libraries Suite
	Windows NT and Agilent IO Libraries M (and Earlier)
	Selecting IO Libraries for GPIB
	Selecting IO Libraries for LAN
	Programming Languages

	Using the Web Browser
	Enabling the Signal Generator Web Server

	Preferences
	Configuring the Display for Remote Command Setups (Agilent MXG)
	Configuring the Display for Remote Command Setups (ESG/PSG/E8663B)
	Setting the Help Mode (Agilent MXG)
	Setting the Help Mode (ESG/PSG/E8663B)

	Error Messages
	Error Message File
	Error Message Types

	2 Using IO Interfaces
	Using GPIB
	Installing the GPIB Interface
	Set Up the GPIB Interface
	Verify GPIB Functionality
	GPIB Interface Terms

	GPIB Programming Interface Examples
	Before Using the GPIB Examples
	Interface Check using HP Basic and GPIB
	Interface Check Using NI-488.2 and C++

	Using LAN
	Setting Up the LAN Interface
	Setting up Private LAN
	Verifying LAN Functionality
	Using VXI-11
	Using Sockets LAN
	Using Telnet LAN
	Using FTP

	Using RS-232 (ESG, PSG, and E8663B Only)
	Selecting IO Libraries for RS-232
	Setting Up the RS-232 Interface
	Verifying RS-232 Functionality
	Character Format Parameters
	If You Have Problems

	RS-232 Programming Interface Examples
	Before Using the Examples
	Interface Check Using HP BASIC
	Interface Check Using VISA and C
	Queries Using HP Basic and RS-232
	Queries for RS-232 Using VISA and C

	Using USB (Agilent MXG Only)
	Selecting I/O Libraries for USB
	Setting Up the USB Interface

	3 Programming Examples
	Using the Programming Interface Examples
	Programming Examples Development Environment
	C++:programming examples;programming examples:C++;
	Running C# Examples
	Running Basic Examples
	Running Java Examples
	Running MATLAB Examples
	Running Perl Examples

	Using GPIB
	Installing the GPIB Interface Card

	GPIB Programming Interface Examples
	Before Using the GPIB Examples
	GPIB Function Statements (Command Messages)
	Interface Check using HP Basic and GPIB
	Interface Check Using NI-488.2 and C++
	Interface Check for GPIB Using VISA and C
	Local Lockout Using HP Basic and GPIB
	Local Lockout Using NI-488.2 and C++
	Queries Using HP Basic and GPIB
	Queries Using NI-488.2 and Visual C++
	Queries for GPIB Using VISA and C
	Generating a CW Signal Using VISA and C
	Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
	Generating an Internal FM Signal Using VISA and C
	Generating a Step-Swept Signal Using VISA and C++
	Generating a Swept Signal Using VISA and Visual C++
	Saving and Recalling States Using VISA and C
	Reading the Data Questionable Status Register Using VISA and C
	Reading the Service Request Interrupt (SRQ) Using VISA and C
	Using 8757D Pass-Thru Commands (PSG with Option 007 Only)

	LAN Programming Interface Examples
	VXI-11 Programming
	VXI-11 Programming Using SICL and C++
	VXI-11 Programming Using VISA and C++
	Sockets LAN Programming and C
	Queries for Lan Using Sockets
	Sockets LAN Programming Using Java
	Sockets LAN Programming Using PERL

	RS-232 Programming Interface Examples (ESG/PSG/E8663B Only)
	Before Using the Examples
	Interface Check Using HP BASIC
	Interface Check Using VISA and C
	Queries Using HP Basic and RS-232
	Queries for RS-232 Using VISA and C

	4 Programming the Status�Register�System
	Overview
	Status Register Bit Values
	Example: Enable a Register
	Example: Query a Register

	Accessing Status Register Information
	Determining What to Monitor
	Deciding How to Monitor
	Status Register SCPI Commands

	Status Byte Group
	Status Byte Register
	Service Request Enable Register

	Status Groups
	Standard Event Status Group
	Standard Operation Status Group
	Baseband Operation Status Group
	Data Questionable Status Group
	Data Questionable Power Status Group
	Data Questionable Frequency Status Group
	Data Questionable Modulation Status Group
	Data Questionable Calibration Status Group
	Data Questionable BERT Status Group

	5 Creating and Downloading Waveform Files
	Overview of Downloading and Extracting Waveform Files
	Waveform Data Requirements

	Understanding Waveform Data
	Bits and Bytes
	LSB and MSB (Bit Order)
	Little Endian and Big Endian (Byte Order)
	Byte Swapping
	DAC Input Values
	2’s Complement Data Format
	I and Q Interleaving

	Waveform Structure
	File Header
	Marker File
	I/Q File
	Waveform

	Waveform Phase Continuity
	Phase Discontinuity, Distortion, and Spectral Regrowth
	Avoiding Phase Discontinuities

	Waveform Memory
	Memory Allocation
	Memory Size

	Commands for Downloading and Extracting Waveform Data
	Waveform Data Encryption
	File Transfer Methods
	SCPI Command Line Structure
	Commands and File Paths for Downloading and Extracting Waveform Data
	FTP:procedures for downloading files;download:waveform data:FTP procedures

	Creating Waveform Data
	Code Algorithm

	Downloading Waveform Data
	Using Simulation Software
	Using Advanced Programming Languages

	Loading, Playing, and Verifying a Downloaded Waveform
	Loading a File from Non-Volatile Memory
	Playing the Waveform
	Verifying the Waveform
	Building and Playing Waveform Sequences

	Using the Download Utilities
	Downloading E443xB Signal Generator Files
	E443xB Data Format
	Storage Locations for E443xB ARB files
	SCPI Commands

	Programming Examples
	C++ Programming Examples
	MATLAB Programming Examples
	Visual Basic Programming Examples
	HP Basic Programming Examples

	Troubleshooting Waveform Files
	Configuring the Pulse/RF Blank (Agilent MXG)
	Configuring the Pulse/RF Blank (ESG/PSG)

	6 Creating and Downloading User-Data Files
	Overview
	Signal Generator Memory
	Memory Allocation
	Memory Size
	Checking Available Memory

	User File Data (Bit/Binary) Downloads (E4438C and E8267D)
	User File Bit Order (LSB and MSB)
	Bit File Type Data
	Binary File Type Data
	User File Size
	Determining Memory Usage for Custom and TDMA User File Data
	Downloading User Files
	Command for Bit File Downloads
	Commands for Binary File Downloads
	Selecting a Downloaded User File as�the�Data
	Modulating and Activating the Carrier
	Modifying User File Data
	Understanding Framed Transmission For Real-Time TDMA
	Real-Time Custom High Data Rates

	Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
	Understanding PRAM Files
	PRAM File Size
	SCPI Command for a List Format Download
	SCPI Command for a Block Data Download
	Selecting a Downloaded PRAM File as�the�Data Source
	Modulating and Activating the Carrier
	Storing a PRAM File to Non-Volatile Memory and Restoring to Volatile Memory
	Extracting a PRAM File
	Modifying PRAM Files

	FIR Filter Coefficient Downloads (E4438C and E8267D)
	Data Requirements
	Data Limitations
	Downloading FIR Filter Coefficient Data
	Selecting a Downloaded User FIR Filter as the Active�Filter

	Save and Recall Instrument State Files
	Save and Recall SCPI Commands
	Save and Recall Programming Example Using VISA and C#

	User Flatness Correction Downloads Using C++ and VISA
	Data Transfer Troubleshooting (E4438C and E8267D Only)
	User File Download Problems
	PRAM Download Problems
	User FIR Filter Coefficient File Download Problems

	Index

